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It is an old and famous idea, that large N QCD is equivalent to a string theory. [1,2]

Many approaches have been tried to make this precise. One of the most promising is to

interpret the diagrams of the strong coupling expansion of the Euclidean lattice theory as

string world sheets. This combines the great advantage of the finite N strong coupling

expansion, that confinement is already present at leading order, with the great advantage

of large N , that we have a free string theory at leading order. This expansion was proposed

for any dimension in [3] and elaborated in [4,5].

Early hopes for the use of the strong coupling expansion were dashed by the discovery

of Gross and Witten and of Wadia [6,7], that even the simplest integrals involving the

Wilson action, such as
∫

dU eN/g2tr (U+U+) tr U (1)

(in two-dimensional Yang-Mills theory, this is a Wilson loop enclosing a single plaquette

of area 1), were non-analytic in the coupling constant (see [8] for the complete treatment

of the problem).

Such behavior is possible because we have O(N) degrees of freedom, and these inte-

grals are dominated by a saddle point. Just as for the infinite volume limit in statistical

mechanics, several saddle points may exist, and the large N limit picks the one of low-

est action for a given value of the coupling. The consequence in higher dimensions was

that integration formulas used in developing the strong coupling expansion were only valid

down to a critical g2
c . The expansion had no validity in the physical regime of weak bare

coupling.

It was not then clear whether this transition is a fundamental barrier to combining

strong coupling and large N or just a reason not to use the Wilson action in this context.

Although we now know much more about large N phase transitions, after having studied

them in depth for their application to two-dimensional gravity and string theory (this one

was studied in [9]), this point is still not clear. It is therefore interesting to modify the

action and see if this modifies or eliminates the transition. The only obvious constraint is

the very weak one that for small lattice spacing, the tr F 2 term should be present in the

action, with higher dimension terms not unnaturally enhanced.

The point was made by Migdal [10] that in two dimensions, one could exactly integrate

out a link common to two plaquettes, and compute an exact renormalization group trans-

formation. The Wilson action is not a fixed point of this transformation; it and generic
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nearby actions flow to the “heat kernel action,” more properly described as a Boltzmann

weight for a plaquette with holonomy U :

Zhk(U ; g2A) =
∑

R

dimRe−g2AC2(R)/2NχR(U) (2)

which is the heat kernel on the group manifold G(U, 1; ∆t = g2A/2N). This was also pro-

posed in [11] for its other nice properties, among them being that it gives exact equivalence

between Euclidean and Hamiltonian lattice formulations, and that using the heat kernel

action, the above Wilson loop expectation value suffers no large N transition. From this

one might conjecture that the transition was a lattice artifact, and that using the heat

kernel action gives us continuum answers with no transition. (Of course this action, used

for the plaquettes of a regular lattice, is not an RG fixed point in D > 2, so even if it

worked for D = 2 the conjecture would not be proven.)

Already in two dimensions the continuum QCD observables, Wilson loop averages:

W (C1, C2, ..., Ck) =<
k

∏

j=1

tr P exp[i

∮

Cj

dxµAµ(x)] > (3)

(where Cj are arbitrarily intersecting and selfintersecting contours on the infinite plane),

show a great deal of structure. These were first computed by [12] for the U(N) gauge group

with N → ∞, and generalized to any N in [13] and to the lattice version of the theory [14]

(see also [15,16]). This calculation was based on the renormalized two-dimensional version

of the Makeenko-Migdal loop equations [17] established in [12] and (in modern language)

on the invariance of the results under area preserving diffeomorphisms.

The most striking feature of the Wilson averages in the limit N → ∞, observed in

[12] was their “stringy” character: each of them was shown to be a sum over all possible

surfaces of the minimal area (without folds) spanned on the contour (“soap films”), of an

exponent of minus area of the surface (area law) times some polynomial of the areas of

domains forming this surface. The geometrical interpretation of the polynomials was not

known at the time. It became clearer from the paper of I. Kostov [5] (see Appendix A

there) where it was demonstrated that they come from the statistics of surfaces (coverings

with boundary) having branch points and cuts, connecting various sheets of a surface. For

recent developments in this direction see [18].
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Another nontrivial quantity is the partition function on a two dimensional compact

manifold of area A and genus G. A formula in terms of the sum over representations of

the gauge group,

ZG(g2A) =
∑

R

(dimR)2−2Ge−g2AC2(R)/2N . (4)

was found in [20]. The sum for the case of the group U(N), say, goes over all Young

tableaux characterized by the components of the highest weight {n1, n2, ..., nN} which are

the integers obeying the inequality:

∞ ≥ n1 ≥ ... ≥ nN ≥ −∞ (5)

So we see that it is still a complicated multiple sum which takes some effort to calculate

in particular cases.

A nice interpretation of this partition functions in terms of minimal coverings, similar

to those of [12] and [5] , was given by Gross and Taylor. [21,22] It was noticed that the

partition function can be written in terms of a sum over minimal coverings of a manifold

of a genus G and area A, where different sheets of a covering are glued together with

elements called branch points, tubes and omega-points. Using an inequality known by

mathematicians, about the possibility of minimal covering of the manifold of a genus G by

a surface of a genus g, Gross found that many terms of the 1/N topological expansion in

the free energy F (A, N) = 1
N2 log Z(A, N) are equal to zero. So, for G = 1 he found that

the O(N2) (spherical world-sheet) contribution to F (A, N) is zero. However, for the next

order (torus topology of coverings) the sum over minimal coverings is infinite and can be

given in terms of the Dedekind function:

F = −2 log η(iA/4π) = − A

24
− 2

∑

n≥1

log(1 − e−nA/2) (6)

(the constant is of course a choice of ground state energy.)

For the spherical topology of the space G = 0, the result is more complicated to

obtain. Its geometrical interpretation contains all of the additional elements mentioned

above, and a purely geometrical derivation looks tricky.

In this paper we present the explicit result for the leading order (planar) contribution

to the free energy of the Yang-Mills theory on the two-dimensional sphere. For large

area of the sphere (compared to 1/g2) it nicely fits the interpretation in terms of minimal
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coverings, down to the phase transition point g2Acrit = π2, where the sum over coverings

is divergent. In the phase of small g2A the result is trivial.

The partition function is

ZG=0(A, N = ∞) = exp[N2F (A)] =
∑

R

(dimR)2e−
A
2N

C2(R) (7)

where we measure the area A in units of 1/g2, and for the group U(N) we have

C2(R) =

N
∑

i=1

ni(ni − 2i + N + 1)

dim R =
∏

i>j

(1 − ni − nj

i − j
)

(8)

and the sum over the representations R has to be understood as a multiple sum over N

integer variables n1, ..., nN obeying the inequality (5). † Now, in the large N limit, nothing

prevents us from using continuum variables:

n(x) =
ni

N
, x =

i

N
, (9)

obeying now the inequality:

n(x) ≥ n(y), if x ≤ y. (10)

It is convenient to change the variable to

h(x) = −n(x) + x − 1/2 (11)

and to write formally the following functional integral representation for the partition

function:

Z0(A) =

∫

Dh(x) exp−N2Seff [h(x)] (12)

where

Seff [h(x)] = −
∫ 1

0

dx

∫ 1

0

dy log |h(x) − h(y)| + A

2

∫ 1

0

dxh2(x) − A/24 (13)

† Strictly speaking these are only representations whose U(1) charge is correlated with the

charge under the center of SU(N), in other words of SU(N)×U(1)/ZZN . Since a single represen-

tation will dominate in the final answer, it is also correct for U(N).
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and h(x) obeys, according to (5) and (11) , the inequality

h(x) − h(y)

x − y
≥ 1. (14)

One of the main observations of this paper is the need to respect this condition in calculat-

ing (12), which will lead to nontrivial consequences such as a new large N phase transition

and the existence of the large area (strong coupling) phase. If we introduce the density of

the boxes in the Young tableau in terms of the variable h

u(h) =
∂x(h)

∂h
(15)

with the normalization
∫

dh u(h) = 1 (16)

the condition (14) can be simply rewritten as

u(h) ≤ 1, for any h (17)

Since we have a large parameter N2 in front of the Seff in (12) we can try to apply

the saddle point approximation, which means that we have to solve the equation on h(x)

δSeff [h(x)]

δh(x)
= 0 (18)

Let us ignore for a moment the constraint (17) . This will lead us immediately to the

integral equation
A

2
h = P

∫

dsu(s)

h − s
(19)

which is precisely the same as for the distribution of the eigenvalues in the hermitean

gaussian matrix model. The solution is the well-known semi-circle law of Wigner:

u(h) =
A

2π

√

4

A
− h2 (20)

From here we obtain immediately for the derivative of the free energy with respect to

the area A

F ′(A) = −∂Seff [h∗]

∂A
=<

tr

2N
h2 > − 1

24
=

1

2A
− 1

24
(21)

or

F (A) =
1

24
A − 1

2
log A (22)
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This result is already clear from (12) where the log A term can be obtained by simple re-

scaling of the continuous field h by
√

A, after which the gaussian integral will not depend on

A. This result was obtained by the same reasoning in [23], where the inequality (17) was

ignored, and hence, the existence of the second, strong coupling phase was not noticed.

Let us explain this result from another point of view. Clearly from (2), we have

ZG=0(A) = Zhk(U = 1; A) = G(U = 1, U ′ = 1; A/2N). (23)

For small A, we really are interested in the small time asymptotics of the heat kernel on

the group manifold. These are well known for arbitrary group manifold H:

ZG=0(A) ∼
(

N

2πA

)dim H/2

+ O(e−2π2N/A) (24)

where the correction is the sum of e−S over all closed orbits on H.

We see the origin of the term −1
2

log A, and that the corrections are suppressed as

e−N/A, hence vanishing in the large N limit.

Remembering now that we have the constraint (17), we note that the trivial solution

(20) is possible only for small areas A:

A ≤ Acrit = π2 (25)

What happens for A > Acrit? We still have to solve the saddle point equation (18) ,

but in the presence of the boundary conditions (5) , or, which is the same, (17) . The

only thing which may happen is that a finite fraction of the highest weight components

n1, ...nN will condense at the boundary of the inequality, namely

nk+1 = nk+2 = ... = nN−k = 0 (26)

whereas all others are non-zero (see fig.1b and compare it to fig.1a, where a typical Young

tableau for the weak coupling phase is presented).

On the language of the density for the continuous variable h it means that

u(h) = 1, for − b ≤ h ≤ b

= ũ(x) elsewhere
(27)

where b = 1/2 − k/N is finite in the large N limit and ũ is some nontrivial function to be

found later.
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In fig. 2 the Young tableau is presented in both phases for the variable h(x). We are

trying to find here a so called two-cut solution, similar to those observed in the hermitean

matrix models with double well potentials [24].

Let us substitute the ansatz (27) into (19) . We get the following equation on ũ(h):

A/2h − log
h − b

h + b
= P

∫

dsũ(s)

h − s
(28)

As we see now, the condensate of the zero highest weight components induces an extra

logarithmic term in the equation. In the language of the equivalent hermitean one matrix

model it would mean that we have the effective matrix potential whose derivative is the

l.h.s. of (28) . This potential clearly has two wells separated from each other by the cut

of logarithm. The eigenvalues fill these wells always to the top. All the eigenvalues which

spill over the top (say, by increasing A) form the condensate.

We introduce, as usual, the function of the complex variable h

f(h) =

∫

ds
ũ(s)

h − s
(29)

whose imaginary part is πũ(h). The solution of the corresponding two-cut Cauchy problem

[25] is given as a contour integral

f(h) = − 1

2πi

√

(a2 − h2)(b2 − h2)

∮

ds
1
2As − log h−b

h+b

(h − s)
√

(a2 − s2)(b2 − s2)
(30)

where the contour of integration encircles the cuts of the square root but leaves aside the

singularities of the nominator and of the pole at s = h. The limits a and b have to be

found later from the condition of the correct behaviour of f(h) for h → ∞.

Now, by inflating the contour we catch, instead of the cuts of the square root, the

singularity at the pole and the cut of the logarithm. This gives

f(h) = h
A

2
− log

h − b

h + b
+

√

(a2 − h2)(b2 − h2)

∫ b

−b

ds
1

(h− s)
√

(a2 − s2)(b2 − s2)
(31)

Let us note that the imaginary part of the logarithm in the r.h.s. of (31) is exactly

equal to the minus π times density of condesate of h′s in the interval [−b, b]. So it is clear

that the last term in (31) represents the full function u(h) defined by (27) . The latter is

expressible in terms of the complete elliptic integral of the third kind Π[θ, x] :

u(h) =
1

π

b − a

b + a

√

(a + h)(b + h)

(a − h)(b − h)
Π[

2b

a + b

h − a

h + b
,
2
√

ab

a + b
] (32)
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In order to find the parameters a,b and the whole free energy, it is better to use the

asymptotics for the large h of (31)

f(h) =h
(A

2
−

∫ b

−b

ds
1

√

(a2 − s2)(b2 − s2)

)

+ h−1
(

2b +

∫ b

−b

ds
s2 − a2+b2

2
√

(a2 − s2)(b2 − s2)

)

+

+ h−3
(

2b +

∫ b

−b

ds
s4 − a2+b2

2 s2 − (a2−b2)2

8
√

(a2 − s2)(b2 − s2)

)

+ O(h−5)

(33)

and compare it with that which follows from the definition (29) :

f(h) = 0 · h − (1 − 2b)h−1 − (F ′(A) + 1/24)h−3 + O(h−5) (34)

This comparison gives (the elliptic integrals are in the appendix) the following results:

The first derivative of the free energy in the strong coupling phase, expressed in terms of

elliptic integrals with modulus k = b/a, is

F ′(A) =
1

6
a2 − 1

12
a2k′2 − 1

24
+

1

96
a4k′4A (35)

where the modulus is related to the area by

1

4
A = (2E − k′2K)K, (36)

the complementary modulus k′2 = 1 − k2, and

a = 4K/A. (37)

This solution represents the strong coupling phase of our theory, namely for the area

of sphere A ≥ π2. It is easy to check that at the point of transition Acrit = π2 the two

solutions coincide completely, even for the distribution u(h) of boxes in the Young tableau.

Let us calculate the order of this transition.

Series expansions become easier in terms of theta constants for a torus of complex

modulus τ . The equation (36) becomes (the relevant identities are in the appendix)

A = 8EK − 4k′2K2

=
π2

3
(θ4

2(0|τ) + θ4
3(0|τ) + 2E2(τ))

= π2(1 + 8q − 8q2 + 32q3 + . . .)

(38)
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where q = eiπτ , and the critical point is the limit τ → i∞.

Now

F ′
strong(A) − F ′

weak(A) =
π2

3A2
(θ4

2(0|τ) + θ4
3(0|τ)) +

π4

6A3
θ8
4(0|τ) − 1

2A
− 1

24

=
1

2A
− 2π2

3A2
E2(τ) +

π4

6A3
θ8
4(0|τ)

→ 0 as τ → i∞

(39)

so we see that the transition is higher order. Inverting (38) and substituting,

F ′
strong(A) − F ′

weak(A) =
1

2A
− 2π2

3A2
(1 − 3

8

(

A − Ac

π2

)2

− 3

32

(

A − Ac

π2

)3

+ . . .)

+
π4

6A3
(1 − 2

(

A − Ac

π2

)

+
3

2

(

A − Ac

π2

)2

+ . . .)

=
1

π2

(

A − Ac

π2

)2

+ . . .

(40)

Thus the phase transition is of the third order, like the well known Gross-Witten-

Wadia phase transition for the lattice two dimensional multicolour gauge theory. However,

in spite of some similarities of these two transitions, the one found in this paper happens

already in the continuum version of the theory, so we cannot say that it is a lattice artifact.

The transition also bears some similarity with the Berezinski-Kosterlitz-Thouless tran-

sition of condensation of vortices on the world sheet of one-dimensional string theory com-

pactified on a circle [26]. In the language of the corresponding matrix quantum mechanics

the point of the phase transition also corresponds there to the disappearance of the gap in

the characteristic Young tableau for the U(N) representations of angular matrix variables

[27].

We can make contact with the results of Gross and Taylor by expanding the answer

about g2A = ∞. Although this is a singular point, the form of the singularity allows a

well-defined double expansion in e−A/2 and Ae−A/2, as will emerge in the following. From

[21], a reason to think that the expansion is unambiguous is that each term e−nA/2 has

a coefficient polynomial in A and of order 2n, a property we would certainly lose if we

expanded the exponentials in some other way. A better argument requires knowing the

analytic structure of F (A), to which we turn. The strong coupling limit was τ → 0; since

series expansions of the theta constants are in eiπτ , clearly we want to make a modular

transformation. This can be done by taking K ↔ K ′ and k ↔ k′ and then going to theta
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functions with modulus τ → i∞ in the strong coupling limit. Using Legendre’s relation

for E′ gives
1

4
A = −k2K ′2 + 2K ′/K(π/2 + KK ′ − EK ′)

= −πiτ +
(πiτ)2

12
(θ4

3(0|τ) + θ4
4(0|τ) − 2E2(τ))

= −πiτ − 2πiτ2 ∂

∂τ
log θ4(0|2τ)

≡ −πiτ + (2πiτ)2R(2πiτ)

(41)

Now

R(2πiτ) = 2
∑

n≥1

ne2niπτ

1 − e4niπτ

= 2e2iπτ + 4e4iπτ + 8e6iπτ + 8e8iπτ + 12e10iπτ + . . . ,

(42)

so in the limit A → ∞ we have τ = iA/4π with corrections exponentially small in A. To

get a double expansion in exp−A/2 and A exp−A/2, we express everything in terms of

theta functions with modulus 2τ , and solve for 2πiτ in terms of A and the exponentially

small R:

2πiτ =
1

4R
(1 −

√
1 + 4RA)

≡ −1

2
A s(AR)

= −1

2
A(1 − RA + 2R2A2 − 5R3A3 + 14R4A4 + . . .)

(43)

We would then successively substitute A for τ in R.

Rewriting F ′(A) in the same way, we find

F ′(A) = − 1

24
+

1

24
s(AR)2(θ4

3(0|τ) − 1

2
θ4
2(0|τ)) +

1

1536
s(AR)4θ8

2(0|τ)A

= − 1

24
+

1

48
s(AR)2(θ4

3(0|τ) + θ4
4(0|τ)) +

1

1536
s(AR)4θ8

2(0|τ)A

= − 1

24
− s(AR)2

1

4πi

d

dτ
log

θ4(0|2τ)

η(2τ)
+

1

96
s(AR)4θ4

2(0|2τ)θ4
3(0|2τ)A

≡ − 1

24
+ s(AR)2F ′

0(2πiτ) + A s(AR)4F ′
1(2πiτ).

(44)

We see that the analytic structure of F ′ in terms of w = e−A/2 is not so simple;

however the branch cut in (43) is away from the origin, and near the origin we have a sum

of terms (log w)mfm(w) with each fm analytic. If we were only given the function F (w),

we could isolate these terms by combining its values on the sheets F (e2πikw); at each order

in w only finitely many fm contribute. This would fix the double expansion uniquely.
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Using (43) and (44), we can get the terms at a given order Am in the double expansion

to all orders in e−A/2 by taking AR small; then (here prime is always d/dA = −4q d/dq)

F ′(A) = − 1

24
+ F ′

0(−A/2) + A(F ′
1 − 2RF ′

0)

+ A2
(

−4RF ′
1 + 5R2F ′

0 − RF ′′
0

)

+ O(A3)

=
∑

n≥1

(2n − 1)e−(2n−1)A/2

1 − e−(2n−1)A/2

+ A

(

1

6

(

1 + 8
∑

n≥1

ne−nA/2(1 − (−e−A/2)n)

1 − e−nA

)

∑

m≥1

(2m − 1)e−(2m−1)A/2

1 − e−(2m−1)A

− 4
∑

m≥1

me−mA/2

1 − e−mA

( 1

24
+

∑

n≥1

(2n − 1)e−(2n−1)A/2

1 − e−(2n−1)A/2

)

)

+ O(A2).

(45)

We have compared this with a direct expansion of the formula (7) to O(exp(−2A)):

F (A) = 2e−A/2 + (−1 − 2A +
1

2
A2)e−A + (

8

3
+ 4A2 − 8

3
A3 +

1

3
A4)e−3A/2 + . . .

−F ′(A) = e−A/2 + (1 − 3A +
1

2
A2)e−A + (4 − 8A + 2A2 − 8

3
A3 +

1

2
A4)e−3A/2 + . . . ,

(46)

and with the O(A0) and O(A) terms to much higher order, and found complete agreement.

One can also reproduce this result by the direct expansion of (35) . †
We also checked this expansion from Gross and Taylor’s rules, dropping the terms

involving “tubes” and “handles” and proportional to powers of A (as appropriate for

U(N)).

One technical conclusion we can draw from the solution is that e−A and A are not

really the natural expansion parameters in the problem. One way to think of this is in

terms of the formalism of [19]. The perturbation is a higher derivative operator, and it is

perhaps surprising that this even has a non-zero radius of convergence. Evidently it does,

and much of the effect of the perturbation can be expressed as a “renormalization” of the

modulus of the cylinder from A to the variable τ determined as above.

† We thank J.-M.Daul, who reproduced this expansion starting from the integral representation

(32) up to O(exp(− 3

2
A)) and found complete agreement.
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In Gross and Taylor’s language the power-like expansion in A is given by inserting

branch points on the string world-sheet. Evidently this expansion diverges at Ac.

We might hope to see the transition from the weak coupling side by noticing that

some expectation value obtains an impossible value in the continuation beyond Ac, just

as for the GWW transition, the continuation of the strong coupling spectral density to

small g was no longer positive. [28] The easy observables to compute here are expectation

values of the local operators tr Ek (E is the electric field), given by
∫

dhu(h)hk. Another

possible way to see the transition would be to see the sum of terms e−N/A in (24) diverge

for sufficiently large A.

Another quantity revealing of the weak coupling phase is the Wilson loop, separating

regions of area A1 and A2. This is again simple in terms of the heat kernel:

WG=0(A1, A2) =

∫

dU G(1, U ; A1/2N)
1

2
tr (U + U+) G(U, 1; A2/2N). (47)

From (24) we learned that in the weak coupling phase, only the leading classical solution

contributes in the heat kernel. Thus we can take the expression of [11] and drop the

winding terms:

G(1, U ; A/2N) = N
∏

i<j

θi − θj

sin 1
2 (θi − θj)

e−(N/A)
∑

i
θ2

i (48)

where eiθi are the eigenvalues of U . Since the invariant measure is

∫

dU =

∫

∏

dθi

∏

i<j

sin2 1

2
(θi − θj), (49)

(47) becomes

WG=0(A1, A2) =

∫

∏

dθi

∏

i<j

(θi − θj)
2e

−N( 1
A1

+ 1
A2

)
∑

i
θ2

i

∑

i

cos θi (50)

which is again an expectation value at a semicircular saddle point:

WG=0(A1, A2) =

(

2√
x

)

J1(
√

x)

= 1 − x/8 + . . .

(51)

where x = A1A2/(A1 + A2).

This is perhaps a peculiar result. It is positive for all A1 + A2 < Acrit but becomes

oscillatory for (unphysical) large A. Even stranger, its asymptotic behavior is cos(
√

A)/A.
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It would be very interesting to calculate the Wilson loop in the strong coupling phase.

Knowing the result for the simple loop, the two-dimensional renormalized loop equations of

[12] would then determine all loop averages. It is clear that these will obey the same Gross

and Taylor rules of the large A1, A2 expansion (but the coverings will have the topology

of the disc now). In the limit of large total area of the sphere we would reproduce all the

results of [12] for the Wilson average on the infinite plane. Only the coverings which do

not wind over the sphere will survive, and they are precisely those which were observed in

[12] , [5] .

Returning to the general consequences of the phase transition, the conclusion for the

relation of the strong coupling expansion to string theory is that string rules derived from

the heat kernel action by expanding about g2 = ∞ (in [22], the expansion was in exp−g2),

do not give the correct answer on a small two-sphere. Now if we were two-dimensional,

we might not care about this – the string rules DO give the right answer in the A → ∞
limit, and all we seem to need for this is that the overall area of our universe be large.

Expectation values for a Wilson loop enclosing an arbitrary area in this universe will be

given correctly. Certainly the ’t Hooft model of mesons in QCD2 has no large N transition

in infinite Minkowski space.

For four dimensional physicists, however, this transition looks like a real problem. The

only precise way we know to define the strong coupling expansion is to start on a lattice,

and take the continuum limit as defined by Wilson. For QCD this will require taking the

bare coupling to zero in the way prescribed by the RG, so our expansion must make sense

at weak coupling. We therefore need to choose an action for which there is (among other

constraints) no large N transition. Although we do not know if the transition we find

for the heat kernel action persists in D > 2, the simple fact that any higher dimensional

lattice contains embedded topological two-spheres puts the burden of proof on the other

side – to show that somehow cancellations between terms in the higher dimensional series

eliminate the transition.

We thank T.Banks, E.Brezin, D.Boulatov, J.-M.Daul, J.Distler, P.Ginsparg, D.Gross,

C.Itzykson, I.Kostov, H.Neuberger, S.Shenker and M.Staudacher for enjoyable discussions.
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Appendix A. Elliptic Integrals and Theta Functions

The basic integrals required are

I0 =

∫ b

−b

dλ
√

(a2 − λ2)(b2 − λ2)
=

2

a
K(b/a) (A.1)

I2 =

∫ b

−b

dλ λ2

√

(a2 − λ2)(b2 − λ2)
= 2a[K(b/a)− E(b/a)] (A.2)

and

I4 =

∫ b

−b

dλ λ4

√

(a2 − λ2)(b2 − λ2)
=

2

3
a[(2a2 + b2)K(b/a)− 2(a2 + b2)E(b/a)] (A.3)

in terms of the standard complete elliptic integrals with modulus k = b/a (e.g. as in [29])

We will write the results in terms of the complementary modulus k′ satisfying k′2 =

1 − k2, using K(k) = K ′(k′), E(k) = E′(k′) and re-express them as theta constants, for

the strong coupling expansion. From [29] (13.20) we have

k = θ2(0|τ)2/θ3(0|τ)2

k′ = θ4(0|τ)2/θ3(0|τ)2

K(k) =
π

2
θ2
3(0|τ)

K ′(k) =
−iπτ

2
θ2
3(0|τ)

E(k) =
θ4
3(0|τ) + θ4

4(0|τ)

3θ4
3(0|τ)

K(k) − 1

12K(k)

θ′′′1 (0|τ)

θ′1(0|τ)

(A.4)

where q = eiπτ = exp(−πK ′/K).

Some standard identities involving these functions:

KE′ + K ′E − KK ′ =
1

2
π

∂2

∂ν2
θn = 4πi

∂

∂τ
θn ∀n

θ′1(0|τ) = πθ2(0|τ)θ3(0|τ)θ4(0|τ) = 2πη(τ)3

θ4
3(0|τ) = θ4

2(0|τ) + θ4
4(0|τ)

θ′′′1 (0|τ)

θ′1(0|τ)
= 4πi

∂

∂τ
log θ′1(0|τ) = 12πi

∂

∂τ
log η(τ) = −π2E2(τ)

(A.5)
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where E2 is the normalized Eisenstein series. We will need as well

θ4
3(0|τ) =

4

πi

∂

∂τ
log

θ2(0|τ)

θ4(0|τ)

θ4
2(0|τ) =

4

πi

∂

∂τ
log

θ3(0|τ)

θ4(0|τ)

(A.6)

proven by checking that both sides are modular forms of weight 2 and level 2, and low

orders in the q-expansion.

All of the relevant theta constants can be expressed in terms of ones with modulus 2τ :

θ4
3(0|τ) = (θ2

3(0|2τ) + θ2
2(0|2τ))2

θ4
4(0|τ) = (θ2

3(0|2τ)− θ2
2(0|2τ))2

θ4
3(0|τ) + θ4

4(0|τ) =
8

πi

∂

∂τ
log

θ2(0|2τ)θ3(0|2τ)

θ2
4(0|2τ)

= −12

πi

∂

∂τ
log

θ4(0|2τ)

η(2τ)

E2(τ) =
6

πi

∂

∂τ
log θ4(0|2τ)η(2τ)

(A.7)

The first two follow from [29] 13.23.15; the third uses these, (A.6) and Jacobi’s identity

(line 3 in (A.5)); the fourth follows from substituting the product representations below.

We will then need series expansions of these and their τ -derivatives. These are best

derived from the logarithmic derivatives. (Here q = eiπτ ):

− 1

4πi

∂

∂τ
log

θ4(0|2τ)

η(2τ)
=

1

24
+

∑

n≥1

(2n − 1)q4n−2

1 − q4n−2

− 1

4πi

∂

∂τ
log θ4(0|2τ) =

∑

n≥1

nq2n

1 − q4n

θ4
2(0|2τ) = 16

∑

n≥1

(2n − 1)q4n−2

1 − q8n−4

θ4
3(0|2τ) = 1 + 8

∑

m≥1

mq2m(1 − (−q2)m)

1 − q4m

E2(2τ) = 1 − 24
∑

m≥1

mq4m

1 − q4m
.

(A.8)

Finally, we use product representations like

θ4(0|τ) =
∏

n≥1

(1 − q2n)(1 − q2n−1)2

η(τ) = q1/12
∏

n≥1

(1 − q2n).
(A.9)
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