Metodi Matematici per la Fisica Teorica

Sessione Invernale, Martedì 15 Gennaio 2019

Compito scritto

1) Si calcoli il valore dell'integrale

$$\int_0^\infty \frac{a \ln(1+bx)}{x^\delta} \mathrm{d}x,$$

con $a,b>0,\,1<\delta<2.$ Trovato il risultato, si valutino i primi due termini della sua espansione in $\epsilon:=2-\delta,$ per $\epsilon\to0^+.$

2) Si determini il termine dominante nell'espansione asintotica di

$$F(x) := \int_0^{2\pi} e^{-x[\sin\theta - \theta\cos\beta]} d\theta, \qquad 0 < \beta < \frac{\pi}{2},$$

per $x \to +\infty$.

- 3) Si determini il vettore di peso massimo della rappresentazione (1,0) di $\mathfrak{sl}(3,\mathbb{C})$ che compare nella decomposizione in rappresentazioni irriducibili del prodotto tensoriale $(2,0)\otimes(0,1)$. [suggerimento: si ricordi che la (2,0) può essere realizzata su $S^2\mathbb{C}^3$, il prodotto tensoriale simmetrico di \mathbb{C}^3].
- 4) Sia

$$J = \left(\begin{array}{cc} 0 & 1_n \\ -1_n & 0 \end{array}\right)$$

la matrice simplettica e $\mathfrak{sp}(2n,\mathbb{R}) = \{A \in M_{2n}(\mathbb{R}), A^T J + J A = 0\}$ l'algebra di Lie simplettica. Sia inoltre $\mathfrak{h} \subset \mathfrak{sp}(2n,\mathbb{R})$ la subalgebra compatta massimale definita come $\mathfrak{h} = \{A \in \mathfrak{sp}(2n,\mathbb{R}), A^{\dagger} = -A\}$. Si dimostri che \mathfrak{h} è isomorfa a $\mathfrak{u}(n)$.