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PREFACE

This text is a rigorous introduetion on an elementary level to the theory
of analytic functions of one complex variable. At American universities
it iz intended to be used by first-year graduate and advanced under-
graduate students.

Since the time the first edition was published there has been a
marked change in the quality of American students of mathematics.
They enter college better prepared, and they are confronted with true
mathematical reasoning at an earlier stage. To a lesser degree the same
ig true abroad,

In preparing the second edition the author has striven to adjust to this
greater maturity of the readers. At the same time the essentially elemen-
tary character of the expogition has not been sacrificed. Indeed, nothing
could be gained by addressing only the ablest students. Therefore, as
in the first edition, the presentation is comparatively broad in the
beginning, except for condensed reviews of familiar material, and rises
only slowly to a higher level of conciseness. The guthor has tried to
emphasize economy of thought in order to make the reader aware of the
intrinsic unity which is so characteristic of the subject.

We enumerate the most important changes from the first edition:

1. The exponential and trigonometric functions are now defined by
means of power series. In order to do so it was necessary to introduce
an early elementary section on complex power series, a procedure that
is not without didactic value in itself.

2, The introduction to point set topology has been rewritten. It
now includes the fundamental properties of metric spaces and a more
detailed discussion of compactness.

3. Normal families are approached in a more direct manner, and the
connection with compactness is emphasized.
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4, The Riemann mapping theorem has been combined with a section
on the Schwarz-Christoffel formula.

5. A short chapter on elliptic functions has been added. T4 is
deliberately very concentrated in an effort to spare the reader from the
customary maze of notations that are needed only by specialists.

6. The exercise sections have been enlarged, and some starred exer-
cises with generous hints for their solution have been included.- The
latter are to be regarded as part of the text, and students should be
encouraged to compose complete proofs. .

I should like to take this opportunity to reaffirm niy indebtedness to
my late teacher Ernst Lindelof. The whole structure of the book is
also deeply influenced by Emil Artin’s idea to base elementary homology
theory on winding numbers.

I am very grateful to a number of mathematicians who have pointed
out errors in the first edition. I can only express a pious hope that no
new ones have crept in.

Lars V. Ahlfors
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1 COMPLEX NUMBERS

1. THE ALGEERA OF COMPLEX NUMBERS

It is fundamental that real and complex numbers obey the sama
basic laws of arithmetic. We begin our study of complex func-
tion theory by stressing and implementing this analogy.

¥ 1.1. Arithmetic Operations. From elementary algebra the
| reader is acquainted with the ¢maginary unit i with the property
' 1? = —1. If the imaginary unit is combined with two real num-
bers «, B by the processes of addition and multiplication, we
| | obtain a complexr number o + 8. a and £ are the real and
i imaginary part of the complex number. If @ = 0, the number is
3 said to be purely imaginary; if § = 0, it is of course real. Zero is
the only number which is at once real and purely imaginary.
Two complex numbers are equal if and only if they have the same
real part and the same imaginary part.
8 Addition and multiplication do not lead out from the gystem
of complex numbers. Assuming that the ordinary rules of
arithmetic apply to complex numbers we find indeed

(1) (e -+ i) + (v 4 i8) = (@ + v) + (B8 + 8)
and
2) (e +iB)(v + i8) = {ay — B8) + i(ad + Bv).

In the second identity we have made use of the relation 52 = —1.
1t is less obvious that division is also possible. We wish to
1




2 COMPLEX ANALYSIS
show that (a + if)/(y -+ i8) is a complex number, provided that v +
i5 5= 0. If the quotient is denoted by z -+ 7y, we must have
a + i = (v + i8)(z + ).
By (2) this condition can be written
a4 8 = (yz — 8y} + (5= + vv),
and we obtain the two equations

a = yr — by
8= &z + vy

This system of simultaneous linear equations has the unique solution

for we know that v* 4 &% is not zero. We have thus the result
a8 _ay+B5, .0y —ad
® e R N

Once the existence of the quotient has been proved, its value can be
found in a simpler way. If numerator and denominator are multiplied

with v — 18, we find at once

@+ _ (at+iB)ly —i8) _ (v + 89) + iy — ad),

v (vl — ) v e
As a special case the reciprocal of a complex number s 0 is given by
1 a—if
e+ o+ B

We note that ¢» has only four possible values: 1, ¢, —1, —¢. They
correspond to values of » which divided by 4 leave the remainders 0, 1,
2, 3.

EXERCISES
1. Find the values of
.5 2 4 i\ N
a+ar, T2 (FE) a+o+a-en
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2. If z = 2 4 iy (z and y real), find the real and imaginary parts of
s=1 1
S R

1
3. Show that

(-1;&;“/5)“&1 and (iiii\/ﬁ)aﬂi
g p)

for all combinations of signs.

1.2. Square Roots. We shall now show that the square root of a
complex number ¢can be found explicitly. If the given number is & - 48,
we are looking for & number z -+ 4y such that

(x + ig)? = o + .
This iz equivalent to the system of equations
Pyt =a
(@) 2zy = B.

From these equations we obtain
@+ 9% = (@ — ¢ + 427t = o + B2
Hence we must have
2+ y? = Vo' +

where the square root is positive or zero. Together with the first equa~
tion (4) we find

®) 2 = o + Vo + 6
y* = }(—a+Va® + 5.

Observe that these quantities are positive or zero regardless of the sign

of a,

The equations (5) yield, in general, two opposite values for z and two
for . But these values cannot be combined arbitrarily, for the second
equation (4) is not a consequence of (5). We must therefore be careful
to select z and y s0 that their product has the sign of 8. This leads to the
general solution

® +vatif= ﬁ(\/ﬁw W“yﬁ;\/"”W)

provided that 8 3¢ 0. Forg = 0thevaluesare + Vaifa = 0, +1 vV—a
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if @ < 0. It is understood that all square roots of positive numbers are
taken with the positive sign.

We have found that the square root of any complex number exists
and has two opposite values. They coincide only if « + i8 = 0. They
are real if 8 = 0, @ Z 0 and purely imaginary if § = 0, « £ 0. In other
words, except for zero, only positive numbers have real square roots and
only negative numbers have purely imaginary square roots.

Since both square roots are in general complex, it is not possible to
distinguish between the positive and negative square root of 8 complex
number. We could of course distinguish between the upper and lower
gign in (6), but this distinetion is artificial and should be aveided. The
correct way is to treat both square roots in a symmetric manner.

EXERCISES
1. Compute

Vi vE viEL Y
2. Find the four values of v/ —1.

3. Compute V¢ and v —1.
4, Solve the quadratic equation

24+ {at+iBzt+ v+ =0

L.3. Justification. So far our approach to complex numbers has been
completely uncritical. We have not questioned the existence of a number
system in which the equation #* + 1 = 0 has a solution while all the rules
of arithmetic remain in force.

We begin by recalling the characteristic properties of the real-number
system which we denote by R. In the first place, R is a field. 'This
means that addition and multiplication are defined, satisfying the associ-
ative, commutative, and distributive lows. The numbers 0 and 1 are neu-
tral elements under addition and multiplication, respectively: ¢ 4+ 0 = ¢,
a-1 = a for all «. Moreover, the equation of subtraction § + = «
has always a solution, and the equation of division iz = « has a solution
whenever 8 # 0.1

One shows by elementary reasoning that the neutral elements and the
results of subtraction and division are unique. Also, every field is an
inlegral domain: off = 0if and only if @ = Qor 8 = 0.

1 We assume that the reader has a working knowledge of elementary algebra.
Although the above characterization of s field is complete, it obviously does not
convey miuch to s student who is not already at least vaguely familiar with the concept.
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These properties are commeon to all fields. In addition, the field R
has an order relation o < B (or § > ). It is most easily defined in terms
of the set Rt of positive real numbers: « < § if and only if 8 — a e R*.
The set B+ is characterized by the following properties: (1) 0 is not a posi-
tive number; (2) if & # 0 either « or —a is posifive; (3) the sum and the
product of two positive numbers are positive. From these conditions one
derives all the usual rules for manipulation of inequalities. In particular
one finds that every square o? is either positive or zero; therefore 1 = 12
is a positive nuwmber.

By virtue of the order relation the sums 1, 1 + 1,141 41, . ..
are all different. Hence R contains the natural numbers, and since it is a
field it must contain the subfield formed by all rational numbers.

Finally, R satisfies the following eompleteness condition: every increas-
ing and bounded sequence of real numbers has a limit. Let oy < ap <
as < -+ < a, < -+, and assume the existence of a real number B
such that o, < Bforalln. Then the completeness condition requires the
existence of s number A = lim,_.,, &, with the following property: given
any & > 0 there exists a natural number nesuch that 4 —~ ¢ < &, < 4 for
all # > ne.

Our discussion of the real-number system is incomplete inasmuch as
we have not proved the existence and unigueness (up to isomorphisms) of
a system R with the postulated properties.t The student who is not
thoroughly familiar with one of the constructive processes by which real
numbers can be introduced should not fail to fill this gap by consulting any
textbook in which a full axiomatic treatment of real numbers is given.

The equation 2* + 1 = 0 hag no solution in R, for o® - 1 is always
positive. Suppose now that a field F can be found which contains Ras a
subfield, and in which the equation 2 + 1 = 0 can be solved. Denote a
solution by 4. Then 2® 4+ 1 = (x 4+ O(xr — 1), and the equation
z* 4+ 1 = 0 has exactly two roots in F, ¢ and —4i. Let C be the subset of
F consisting of all elements which can be expressed in the form « + 8
with real & and 8. This representation is unique, for « + i = &' + i3’
implies & — o' = —i(f — #"); hence (@ — &')2 = — (8 — #)%, and this is
possible only if @ = &/, B = §'.

The subset C is a subfield of F. In fact, except for trivial verifica-
tions which the reader is asked to carry out, this is exactly what was shown
in8ec. 1.1.  What is more, the structure of C is independent of F. For if
F’ is another field containing R and a root 4’ of the equation 2% -+ 1 = 0,

t An isomorphism between two fields is a one-to-one correspondence which pre-
serves sums and products. The word is used quite generally to indicste s corre-
Spondence which is one to one and preserves all relations that are considered important
in a given connection.
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the corresponding subset €' is formed by all elements o 4 ¢’8. 'There is
a one-to-one correspondence between € and €' which associates o + 18
and « 4 '8, and this correspondence is evidently a field isomorphism.
It is thus demonstrated that C and €’ are isomorphic.

We now define the field of complex numbers to be the subfield C of an
arbitrarily given F. We have just seen that the choice of F makes no
difference, but we have not yet shown that there exists a field F with the
required properties. In order to give our definition a meaning it remains
to exhibit a field F which contains R (or & subfield isomorphic with R)
and in which the equation z* + 1 = 0 has a root.

There are many ways in which such a field can be constructed. The
simplest and most direct methed is the following: Consider all expressions
of the form « - {8 where o, 8 are real numbers while the signs + and ¢ are
pure symbols {4 does not indicate addition, and ¢ is nof an element of a
field). These expressions are elements of a field F in which addition and
multiplieation are defined by (1) and (2) (observe the two different mean-
ings of the sign +). The elements of the particular form e 4 70 are seen
to constitute a subfield isomorphic to R, and the element 0 + <1 satisfies
the equation z* 4 1 = 0; we obtain in fact (0 - ¢1)% = —(1 -+ <0).
The field ¥ has thus the required properties; moreover, it is identical with
the corresponding subfield C, for we can write

a+if = (a + 0) + B0 + <1).
The existence of the complex-number field is now proved, and we can go

back to the simpler notation & + i8 where the - indicates addition in C
and ¢ is a root of the equation z* + 1 = 0.

EXERCISES (For students with s background in algebra)
1. Show that the system of all matrices of the special form

(-5 2)

combined by matrix addition and matrix multiplication, is isomorphic to
the field of complex numbers.

2. Show that the complex-number system can be thought of as the
field of all polynomials with real coefficients modulo the irreducible
polynomial 2 +4- 1,

1.4. Conjugation, Absolute Value. A complex number can be
denoted sither by asingle letter a, representing an element of the field C, or
in the form a -4 48 with real « and 8. Other standard notations are
=248y ¢ = {4, w=u-dw, and when used in this connection it
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is tacitly understood that z, y, £ 9, u, v are real numbers. The real and
imaginary part of a complex number ¢ will also be denoted by Re g, Im a.
In deriving the rules for complex addition and multiplication we used
only the fact that ¢ = —1. Since —¢ has the same property, all rules
must remain valid if ¢ is everywhere replaced by —3. Direct verification
shows that this is indeed so. The transformation which replaces o 4 48
by a — 8 is called complex conjugation, and « — 8 is the conjugale of
a -+ if. The conjugate of a is denoted by d@. A number is real if and
only if it is equal to its conjugate. The conjugation is an nvolutory
transformation: this means that § = a.
The formulas
a4+ a
2

a—4a

Rea = %

» Ima =

express the real and imaginary part in terms of the complex number and
its conjugate. By systematic use of the notations ¢ and & it is hence
possible to dispense with the use of separate letters for the real and
imaginary part. It is more convenient, though, to make free use of both
notations.

The fundamental property of conjugation is the one already referred
to, namely, that

The corresponding property for quotients is a consequence: if ax = b,
then @z = b, and hence (b/a) = b/@. More generally, let R(a,b,e, . . .)
stand for any rationsl operation applied to the complex numbers a, b, ¢,

Then
R(abe, .. ) = R(abg, .. .).
As an application, consider the equation

Cozﬂ‘*“clz"_i’i’ et ”’I"cw—!z"'}’cn = 0.

If § is & root of this equation, then { is a root of the equation

o™ 4 CemV 4 - S Eiz & = O

In particular, if the coefficients are real, { and { are roots of the same equa-
tion, and we have the familiar theorem that the nonreal roots of an equa-
tion with real coefficients occur in pairs of conjugate roots.

The product ad@ = o? + B is always positive or zero. Its nonnega-
tive square root is called the modulus or absolute value of the complex num-
ber e; it is denoted by |a|. The terminology and notation are justified by
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the fact that the modulus of a real number coineides with its numerical
value taken with the positive sign.
We repeat the definition
ad = lal?,

where |a] = 0, and observe that |a] = |al. For the absolute value of a
product we obtain

lab]* = ab - ab = abab = adbb = |a|?|b|?,
and hence
lab] = la] - [b]

gince both are = 0. In words:
The absolute value of a product is equal to the product of the absolute
values of the faclors.

It is clear that this property extends to arbitrary finite products:
lasas - -+ @a| = Jaaf - lae] + - - |aa].

The quotient a/b, b = 0, satisfies b(a/b) = a, and hence we have also
Bl - |a/b] = lal, or
a

al _ lf
)

=
The formula for the absolute value of 5 sum is not assimple. We find
la + b2 = (a + bY@ + b) = ad + (ab + ba) + bb

(()’;) la + bi? = |a|* 4 |52 + 2 Re ab.
The corresponding formula for the difference is
@) la — Bl = lal? -+ [b|?> ~ 2 Re ab,
and by addition we obtain the identity
(8) le +B* + o — b]* = 2(|al* + [B]?).
EXERCISES
1. Verify by caleulation that the values of
B
241

for z = z 4+ 4y and 2 = z — iy are conjugate.
2. Find the absolute values of

B+ 4)(—1 +2)
—1- 93—

—2i(3 + )2 + 41 + 9 and
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2. Prove that
a-—b

T=a ~ !

if either o] = 1or ] = 1. 'What exception must be madeif |a| = |b] = 1?
4. Find the eonditions under which the equation az -+ b2 - ¢ = 0
in one complex unknown has exactly one solution, and compute that

solution.
5. Prove Lagrange’s identity in the complex form

n ({3 7 _ ~
l El abi ' = _21 fadl® _21 B2 = Y lad; — abidn

18i<isn

1.5. Inequalities., We shall now prove some important inequalities
which will be of constant use. It is perhaps well to point out that there
is no order relation in the complex-number system, and hence all inequali-
ties must be between real numbers.

From the definition of the absolute value we deduce the inequalities

—la] £ Re a < |af
) —lal £ Ima < |al.

The equality Re a = |a| holds if and only if @ is real and = 0.™
If (%) is applied to (7), we obtain

la + b2 < (la] + [b])*
and hence

(10) la -+ b] < o] + .

This is called the triangle tnequality for reasons which will emerge later.
By induction it can be extended to arbitrary sums:

(11) los+as+ - - - +oad S| + el + - - - F el

The absolute value of a sum is at most equal to the sum of the absolute
values of the lerms.

The reader is well aware of the importance of the estimate (11) in the
real case, and we shall find it no less important in the theory of complex
tumbers,

Let us determine all cases of equality in (11). In (10) the sign of
equality holds if and only if ab = 0 (it is convenient to let ¢ > 0 indicate
that ¢ is real and positive). If b 5 0 this condition can be written in the
form |b|*(a/b) = 0, and it is hence equivalent to a/b = 0. In the general
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case we proceed ag follows: Suppose that equality holds in (11); then

loa] 4 fast + - - - Aol = [(@ + a2) + a4 - - -+ @l
Slas a4 lagl 4+ - - - Flasl S la] + el + - - - + an).

Hence lay + as| = |ay| + |a2], and if a; 3 0 we conclude that ay/as = 0.
But the numbering of the terms is arbitrary; thus the ratio of any two
nonzero terms must be positive. Suppose conversely that this condition
is fulfilled. Assuming that a; ¢ 0 we obtain

R R L EI R IR S +§~'}‘
= L ST 1‘127__! .. jﬁ‘f&*)
—lo (142 + +a1)wiazl(1+i ! +{o

=l + lao) + - - - + ladl.

To sum up: the sign of equality holds in (11} if and only if the ratio of any
© {wo nonzero lerms 18 postlive.
By (10} we have also
lal = i@ — b + 8] < |a — b] 4 Jb|
or
lal — b = |e — Bl

For the same reason |b| — la| = |@ — b|, and these inequalitics can be
combined to

(12) la — 8| 2 [la] — [Bi.

Of course the same estimate can be applied to |a + bl.
A special case of (10} is the inequality

(13) le + i8] = o + |8l

which expresses that the absolute value of a complex number is at most
equal to the sum of the absolute values of the real and imaginary part.

Many other inequalities whose proof is less immediate are also of fre-
quent use. Foremost is Cauchy’s tnequality which states that

{aibl + - "i'anbniz = (iﬁ:iz‘l' R lﬂnlz)(16112 R §b,,[2)
or, in shorter notation,

(14) |)j ab:| < E [aziSa ) ;b 2.1

4 is & convenient summation index and, used as a subseript, cannot be confused
with the imaginary unit. It seems pointless to ban its use,
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To prove it, let » denote an arbitrary complex number. We obtain
by (7)

a5) 3 o= x = 3ol e 3 i - 2Ro% 3 an
f=1 i=1 gl iml

This expression is 2 0 for all .. We ean choose
n
E aib,-
1
A= —

2 |b?

for if the denominator should vanish there is nothing to prove. This
choice is not arbitrary, but-it is dictated by the desire to make the
expression (15) as small as possible. Substituting in (15) we find, after
simplifications,

which is equivalent to (14).

From (15) we conclude further that the sign of equality holds in (14)
if and only if the a; are proportional to the b,

Cauchy’s inequality can also be proved by means of Lagrange’s
identity (Sec. 1.4, Ex. 4),

EXERCISES
1. Prove that
a—b
T—ab| <1

if la| <1 andb| < 1.
2. Prove Cauchy’s inequality by induction.
. Ifla] <L, Mz Ofori=1,... nandrh 4+l -0 A= 1,
show that
i)\;al + Nals + T + )\nanl < 1.

4. Show that there are complex numbers z satisfying
|z — a|l + |z + a| = 2|
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if and only if |a| = l¢|. If this condition is fulfilled, what are the smallest
and largest values of |2|?

2Z THE GEOMETRIC REPRESENTATION OF
COMPLEX NUMBERS

With respeet to a given rectangular coordinate system in a plane, the
complex number ¢ = « 4 8 can be represented by the point with coordi-
nates («,8). This representation is constantly used, and we shall often
speak of the point a as a synonym of the number a. The first coordinate
axis (z-axis) takes the name of real axis, and the second coordinate axis
(y-axis) is called the émaginary azds. The plane itself is referred to as the
complex plane.

The geometric representation derives its usefulness from the vivid
mental pictures associated with a geometric language. We take the point
of view, however, that all conclusions in analysis should be derived from
the properties of real numbers, and not from the axioms of geometry.
For this reason we shall use geometry only for descriptive purposes, and
not for valid proof, unless the language is so thinly veiled that the analytic
interpretation is self-evident. This attitude relieves us from the exi gencies
of rigor in connection with geometric considerations.

2.1. Geometric Addition and Multiplication. The addition of com-
plex numbers can be visualized as vector addétion. 'To this end we let a
complex number be represented not only by a point, but also by a vector
pointing from the origin to the point. The number, the point, and the
vector will all be denoted by the same letter a.  As usual we identify all
vectors which can be obtained from each other by parallel displacements.

Place a second vector b so that its initial point coincides with the end
pointof . Then a + b is represented by the vector from the initial point
of a to the end point of b. To construct the difference b — o we draw
both vectors @ and b from the same initial point; then b — o points from
the end point of a to the end point of b. Observe that ¢ + b and @ — b
are the diagonals in a parallelogram with the sides a and & (Fig. 1).

An additional advantage of the veetor representation is that the length
of the vector a is equal to |a|. Hence the distance between the points ¢
and b is |a — bl. With this interpretation the triangle inequality
la -+ b < lal + [b] and the identity |¢ + b]* + o — Bz = 2(|el® + {b]%)
become familiar geometric theorems.

The point @ and its conjugate 4 lie symmetrically with respect to the
real axis. The symmetric point of @ with respect to the imaginary axis is
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¥F16, 1. Vector addition,

-—d. 'The four points a, —d, —a, & are the vertices of a rectangle which
is symmetric with respect to both axes.

In order to derive a geometric interpretation of the product of two
complex numbers we introduce polar coordinates.  If the polar coordinates
of the point (e,8) are (r,¢), we know that

o =T Co8 ¢
B8 = rsin ¢,

Hence we can write & = a + i = r{cos ¢ + isin¢). In this #rigo-
nomelric form of a complex number r is always = 0 and equal to the
modulus |a|. The polar angle ¢ is called the argument or amplitude of the
complex number, and we denote it by arg «.

Consider two complex numbers a; = r(cos ¢ + ¢ 8in ¢;) and
@2 = 73(c08 ¢z -+ 18I0 ¢z). Their product can be written in the from
1@ = 17l (OB @) COS gy~ 8IN @1 8IN o) -+ (8in @) o8 2 + €08 @ 8iN @s)].
By means of the addition theorems of the cosine and the sine this expres-
sion can be simplified to

(16) mes = 717r:feos (g1 + @3) + ©sin (¢1 + e2)].

We recognize that the product has the modulus #75 and the argument
@1+ @2 The latter result is new, and we express it through the equation

an arg {ay) = arg a, -+ arg as.

I is clear that this formula can be extended to arbitrary produets, and
we ean therefore state:

The argument of a product is equal to the sum of the arguments of the
factors.

This is fundamental. The rule that we have just formulated gives a
deep and unexpected justification of the geometrie representation of com-
Plex numbers. We must be fully aware, however, that the manner in
which we have arrived at the formula (17) violates our principles. In the
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first place the equation (17) is between angles rather than between num-
bers, and secondly its proof rested on the use of trigonometry, Thus it
remains to define the argument in analytic terms and to prove (17) by
purely analytic means. For the moment we postpone this proof and
shall be content to discuss the consequences of (17) from a less eritical
standpoint.

We remark first that the argument of 0 is not defined, and hence (17)
has a meaning only if a; and @, are 3£ 0. Becondly, the polar angle is
determined only up to multiples of 360°. For this reason, if we want to
interpret (17) numerically, we must agree that multiples of 360° shall not
count.

By menns of (17) a simple geometric construction of the product aias
ean be obtained. It follows indeed that the triangle with the vertices
0, 1, a1 is similar to the triangle whose vertices are 0, as, a;a;.  The points
0, 1, a; and a; being given, this similarity determines the point a;a, (Fig. 2).

In the cage of division (17) is replaced by

(18) arg ? = arg @: — 8IL 4.

3
The geometric construction is the same, except that the similar triangles
are now 0, 1, a; and 0, as/as, ..

Remark: A perfectly acceptable way to define angles and arguments
would be to apply the familiar methods of caleulus which permit us to
express the length of a circular arc as a definite integral. This leads to a
correct definition of the trigonometric functions, and to a computational
proof of the addition theorems.

The reason we do not follow this path is that complex analysis, as

a1¢ 2

&y

0 i FIG. 2. Vector multiplication.

COMPLEX NUMBERS 15

sed to real analysis, offers a mueh more direct approach. The clue
8 in a direct connection between the exponential function and the
gonometrie functions, to be derived in Chap. 2, Sec. 5. Until we
ach this point the reader is asked to subdue his quest: for complete ;'igor

EXERCISES

1. Find the symmetric points of ¢ with respect to the lines which
bigect the angles between the coordinate axes,

. 2. 'Prmie that the points g, @z, 8s are vertices of an equilatersl {
- if and ouly if @} + af + 6} = 410, + a0, + @30,
3. Suppose that a and b are two vertices of i
ppose a square. F
‘ 'other vertices in all possible cases. ! nd the two

4: Find t:he cent_er and the radius of the eirele which circumscribes
the triangle with vertices 1 @2, 03, Express the result in symmetric form,

riangle

2.2, The Binomial Equation. From the i
. preceding results we deri
that the powers of ¢ = r{cos ¢ 4+ i sin ¥) are given by e

{19) a* = "{cos ne + 4 sin ).

This formula is trivially valid for » = 0, and since

1 .,
@ rYcos ¢ — ¢ sin ¢) = rYcos (—¢) + isin {(—e)]

- it hei:is also when n is a negative integer,
; For 7 = 1 we obtain de Mojvre's Jormula

% . =
(20) (cos ¢ + 1 gin )" = cosneg + i sin g

which provides an extremely simple way
terms of cog @ and sin ¢,

’ff.‘e find the nth root of a
€quation

@n

to express cos ne and sin ne in

complex number ¢ we have to solve the

2* = q,

Bu i
PPosing that ¢ s« G we write ¢ = r{eo8 ¢ -+ ¢ sin ¥) and

- # = p(cos & + { sin 6).
Hen (21) takes the form

p*(cos n8 + { gin n8) = r(cos ¢ + ¢ sin o).
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This equation is certainly fulfilled if p* = » and n8 = . Hence we
obtain the root

2= {”/;(cosg ~i~isin:~z),

where ~/r denotes the positive nth root of the positive number r.

But this is not the only solution. In fact, (22) is also fulfilled if n#
differs from ¢ by a multiple of the full angle. H angles are expressed in
radians the full angle is 27, and we find that (22} is satisfied if and only if

Pyl
6=L4p-2

where k is any integer. However, only the valueskt = 0,1, . . . ,n — 1
give different values of z. Hence the complete solution of the equation
(21} is given by

_ e 4 isin{ 2+ Y] k= -~
z—\/r[cos(ﬁ-{—k%)-{—zsm(n-{—kn)], k=0,1,...,n—1

There are n nth roots of any complex number # 0. They have the same
modulus, and their arguments are equally spaced,

Geometrically, the nth roots are the vertices of a regular polygon
with n sides.

The case a = 1 is particularly important. The roots of the equation
z» = 1 are called nth roots of unity, and if we set

2

7 S i
(23) 0 = 08—~ + isin - w

all the roots can be expressed by 1, w, 2, . . . , o" % It is also quite
evident that if v/a denotes any nth root of ¢, then all the nth roots ¢df be
expressed in the form o* - /0, k=0,1, . . . ,n — L

EXERCISES

1. Express cos 3¢, cos 4¢, and sin 5¢ in terms of cos ¢ and sin ¢.

2, Simplify 1 + cos ¢ +cos2¢ + + - - 4+ cosne and sine¢ -+
8in 2 - - ¢ ¢ - sin ne. )
3. Express the fifth and tenth roots of unity in algebraic form.

4. I w is given by (28), prove that

R T S e B R

for any integer b which is not a multiple of n.
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5. What is the value of
1 — wh o @ - o b (1) LAY

2.3. Analytic Geometry. In classical analytic geometry the equation
of a locus is expressed as a relation between 2 and y. 1t can just as well
be expressed in terms of z and Z, sometimes to distinct advantage. The
thing to remember is that a complex equation is ordinarily equivalent to
two real equations; in order to obtain a genuine locus these equations
should be essentially the same,

For instance, the equation of a circle is |z — @] = ». In algebraic
form it can be rewritten as (z — a}(Z — @) = r%. The fact that this equa-~
tion I8 invariant under complex eonjugation is an indication that it
represents a single real equation. ,

A straight line in the complex plane can be given by a parametric
equation z = a - bt, where a and b are complex numbers and b = 0; the
parameter { runs through all real values. Two equations z = a -+ bt and
¢ = a -+ bt represent the same hne if and only if o' — ¢ and ¥’ are real
multiples of b. The lines are parallel whenever b’ is a real multiple of b,
and they are equally directed if ¥ is a positive multiple of b.  The direc-
tion of a directed line can be identified with argb. The angle between
2= a-+ b and z = & 4 b't is arg b’ /b; observe that it depends on the
order in which the lines are named. The lines are orthogonal to each
other if ¥ /b is purely imaginary,

Problems of finding intersections between lines and circles, parallel
or orthogonal lines, tangents, and the like usually become exceedingly
simple when expressed in complex form.

An inequality lz — a] < r deseribes the inside of a circle. Similarly,
a directed line 2 = a + bt determines a right half plane consisting of all
points z with Im (2 — @)/b < 0 and a left half plane with Im (z — a)/b > 0.
An easy argument shows that this distinetion is independent of the
Parametrie representation.

EXERCISES

1. When does az + b2 4 ¢ = 0 represent a line?
. 2. Write the equation of an ellipse, hyperbola, parabola in complex
orm,

3. Prove that the diagonals of a parallelogram bisect each other and
that the diagonals of a rhombus are orthogonal.
4 Prove analytically that the midpoints of parallel chords to a circle
lie on a diameter perpendicular to the chords,
5. Show that all circles that pass through e and 1/a intersect the
circle |zf = 1 at right angles.
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2.4. The Spherical Representation. For many purposes it is useful to
extend the system C of complex numbers by introduction of & symbol
to represent infinity. 1ts conne estab-
lished by setting & 4= @ fo= " for all finite a,

ction with the finite numbers is
and

=

N

h-w®

however, to define

pe= 0. It18 jimpossible,
By special

for all b # 0, including
violating the laws of arithmetic.

w 4 @ and 0 * without
convention we ghall nevertheless write a/0 = « fora # 0and b/ =0
for b # .

In the plane there is no room for & point corresponding to =, but we

G deal’ point which we call the point at infinity.

The points in the plane together with the point at infinity form the
extended complex plane. We agree that every straight line shall pass
through the point at infinity. BY contrast, no half plane shall contain

the ideal point.

can of course introduce an ‘

It is desirable to introduce & geometric model in which all points of
To this end we con-

the extended plane have a concrete representative.
gder the unit sphere § whose equation in three-dimensional space is

224t = 1. With every point on S, except (0,0,1), we canl associ-
ate a complex mmber

xy + 2

j - T3

Tndeed, from (24) we obtain

(24) z =

and this correspondence is one to one.

ol = A = Lo
(1 - T3 2 1 - 123’
and hence
_ k=1
(25) Ty = |2F + 1
Fuarther computation yields
oy = L
1T
(26) z—Z

The eorrespondence can be complete
correspond to (0,0,1), and we can thus regard the
sentation of the extended plane or of the extended pumber system.
note that the hemisphere 2z < 0 corresponds to the disk {2

d by letting the point at infinity
gphere as a Tepres

We
< 1 and the
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iSphere rs > 0 to its outside lef > 1 .
is referred to as the Riemann Sj}Uiierg . In function theory the sphere
_ If the complex plane is identiﬁe;i i

. - with the (31,22}~ .
- and x'”"a‘msrc‘_’rmspondmg to the real and imagixga;sz ﬁxﬁafez ngl the
the transi:ormatmn (24) takes on a simple geometric meanjf pec Y‘?}‘y’
z = 2 -+ @ We can verify that ng. Writing

27

and this meaps that the points (z,y,0) (&,&
this | ‘ 0) @y 2,23, and (0,0,1) are i
izr;;egrt({l’lgei) izx};&:;iiu? Lor.mspondenfse is a central projectior)i froinntlhz
Ih t},le, e o in Fig. 3: It is called a stereographic projectioﬁ
g, an'i e 'rel?resentatlon there is no simple interpretatio f
ditior d mu tiplication. 1ts advantage lies in the fact h oin
at 111?;1{15)( is no longer distinguished. ' act that the point
is geometrically evident that the : i ject
i{}:ﬁ:g;vte;y StII‘&.ight line in the z—planeeif::)m: gcli:jtlz)l]elif)r:) rgls:iz'lz}? s
e 0; f}(:ees {2,0,1), and the eonverse is also true. More génfliflsle ;
o thié W;; ezl'}e corresponds to.acirele or straight linein t-hez—plani’
AR (L serve that a circle on the sphere lies in a plane;,
e o+ e 40 3:::31—— as, Where we can assume that i taltel=1
= o . In terms of z and 2 this equation takes the2 for;vzl3 -

iy —1 = Ta1Zails — 1,

az 4 ) — asilz — 8) + as(fe]? ~ 1) = aollel® + 1)

(oo — as)(z? + ¢ — 2007 — 205y + e+ a3 =0

For o 7 is i i
. stm{ighta]? Iflns 38 the equation of a circle, and for ay = a3 it represe
 line. onversely, the equation of any circle or strai%ht I?xf:

N

FI1G. 3. Stereographiec projection.
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can be written in this form. The correspondence is consequently one

to one.
It is easy to calculate the distance d(z,z) between the stereographic

projections of z and /. If the points on the sphere are denoted by
(271,332,373), (xg,xérx:;)’ we have first
(@ — ) + (@2 — ®)* + (@3 — 23)? = 2 — 2aw] + 2e7) + zxl).

From (35) and (36) we obtain after a short computation

&y + xaxh + zaxh
_ERE 4 - = — &) + (2 — D2~ 1)
- 1+ A+ 115
_ A+ D) ~ 20 = 27
{1+ 50 4+ &

As a result we find that
- 2‘2 — 2’1
28 d(zz) =
@) & = T a T

For 2/ = o the corresponding formula ig

2
dlz, o) = m

EXERCISES
1. Show that z and 2’ correspond to diametrically opposite points on

the Riemann sphere if and only if 22 = —~1.

2. A cube has it vertices on the sphere 8 and its edges parallel to the
coordinate axes. Find the stereographic projections of the vertices.

3. Same problem for a regular tetrahedron in general position.

4. Let Z, Z’ denote the stereographic projections of z, ', and let N be
the north pole. Show that the triangles NZZ’ and Nzz' are similar, and

use this to derive (28).

5. Find the radius of the spherical image of the circle in the plane

whose center is a and radius R.

COMPLEX FUNCTIONS

1. INTRODUCTION TO THE CcON
CEPT
ANALYTIC FUNCTION oF

'.I;Eim theory of functions of a complex vartable aims at extendin,
c ctxlus to 1t%le complex domain, Both differentiation and inte%
gration acquire new depth and significance; at the same time the
iﬁnge (;i; al?plaeabillty becomes radically restricted, Indeed, only
an:; (iz:teytzc t::;' kolomorphie functions can be freely diﬂ'ereni;i&ted
Pty gr?, . They are the only true “functions” in the sense
of the French “Théorie des fonctions” or the (e
Funktionentheorie,” v o
e N evertheless, we shall uge the term “function” in its modern
ning.  Therefore, when stepping up to complex humbers we

:;;‘;?:;’.a A; & practical matteI: we agree that the letters z and o
P y;s enote compie:f variables; thus, to indicate a complex
The ;wt 1?‘ a complex v.anable we use the notation w — fa.1
undersman :;n y ;— J(z) will be used in g neutral manner with the
I 6el-ngd t at x and y can be either real or complex, When
by mdicate that a variable is definitely restricted to real

¢8, we shall usually denote it by t. By these agreements we

for s z;ﬁ)éiz;x; ;:Zuf:ilents are “;Iﬂ aware that f stands for the function and f{z)

: netion.  However, analysts iti i
tontinye to speak of “the funetion Fz)° ok aro tmditionally minded and
a
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do not wish to cancel the earlier convention whereby a notationz = x 4+ 4y
automatically implies that x and y are real.

It is essential that the law by which a function is defined be formulated A

in clear and unambiguous terms. In other words, all functions must be
well defined and consequently, until further notice, single-valued.t

It is nof necessary that a function be defined for all values of the
independent variable. For the moment we shall delibérately under-
emphasize the role of point set theory. Therefore we make merely an
informal agreement that every function be defired on an open sef, by
which we mean that if f(a) is defined, then f(x} is defined for all z suffi-
ciently close to a. The formal treatment of point set topology is deferred
until the next chapter.
1.1. Limits and Continuity. The following basic definition will be
adopted:

Definition 1.

)

The function f(z) is said to have the limit A as x fends to a,

m flz) = A,

if and only if the following is true:
For every & > 0 there exists @ number § > 0 with the property thai
f(x) — Al < & for all values of x such that |z — a| < 8 and z > a.

This definition makes decisive use of the absolute value. Since the
notion of absolute value has a meaning for complex as well as for real
numbers, we can use the same definition regardless of whether the variable
z and the function f(z) are real or complex.

As an alternative simpler notation we sometimes write: f{z) — A for
T a.

There are some familiar variants of the definition which correspond
1o the ease where o or A is infinite. In the real case we can distinguish
between the limits 4« and — «, but in the complex case there is only
one infinite limit. We trust the reader o formulate eorrect definitions
to cover all the possibilities.

The well-known results concerning the limit of a sum, a product, and
a quotient continue to hold in the complex case. Indeed, the proofs
depend only on the properties of the absolute value expressed by

lab| = |a| - o]  and  la +b| £ lal + Jbl.

t We shall sometimes use the pleonastic term single-valued function to underline
that the funetion has only one value for each value of the variable.
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Condition (1) is evidently equivalent to

Iim f(z) = A.

yom (1) and (2) we obtain
Iim Re f(z) = Re A

- a

lim Im f(z) = Im A.

Conversely, (1) is a consequence of (3).

The function f(z) is said to be continuous af a if and only if
lim f(z) = f(g). A continuous function, without further qualification,
-t

is one whieh is continuous at all points where it is defined.
. The sum f(z) -+ g(x) and the produet f(x)g(x) of two continuous func-
tiops are continuous; the quotient f(x)/g(z) is defined and continuous at
a if and only if g(a) = 0. If f(x) is continuous, so are Re f(x), Im f(z),
and |f(z)].
The derivative of a function is defined as a particular limit and can be
considered regardless of whether the variables are real or complex. The
formal definition is
() Fla) = Bim 18 — 1@

Tl r—4a
The usual rules for forming the derivative of a sum, a product, or a
quotient are all valid. The derivative of a composite function is deter-
mined by the chain rule.
There is nevertheless a fundamental difference between the cases of a
real and a complex independent variable. To illustrate our point, let
f(#) be a real function of a complex variable whose derivative exists at
z=g. Then f'(a) is on one side real, for it is the limit of the quotients

fla+h) — fla)
h

a8 h tends to zero through real values. On the other side it is also the
Limit of the quotients

fla + ih) — f(a)
th

and as such purely imaginary. Therefore f/{e) must be zero. Thus a

;;3121 fur%ctio‘rl of a complex variable either has the derivative zero, or else
derivative does not exist.
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The case of a complex function of a real variable can be reduced fo the
real ease. If we write 2(8) = 2() + sy(t) we find indeed

2 = 2'(@) + i),

and the existence of #'(f) is equivalent to the simultaneous existence of
2’ (f) and (). The complex notation has nevertheless certain formal
advantages which it would be unwise to give up.

In contrast, the existence of the derivative of a complex function of a
complex variable has far-reaching consequences for the gtructural proper-
tics of the function. The investigation of these consequences is the cen-
tral theme in complex-funetion theory.

1.2. Analytic Functions. The class of analytic functions is formed by
the complex functions of a complex variable which possess a derivative
wherever the function is defined. The term holomorphic function is used
with identical meaning. For the purpose of this preliminary investiga-
tion the reader may think primarily of functions which are defined in the
whole plane.

The sum and the product of two analytic functions are again analytic.
The same is true of the quotient f(2)/g(z) of two analytic functions, pro-
vided that g(z) does not vanish. In the general case it is necessary to
exclude the points at which g(z) = 0. - Strictly speaking, this very typi-
cal case will thus not be included in our considerations, but it will be clear
that the results remain valid except for obvious modifications.

The definition of the derivative can be rewritten in the form

fe+h) — 1@
o )

Fz) = lin AL N
Fr

As » first consequence f(z) is necessarily continuous. Indeed, from

fz + 1) ~ f(2) = b+ (f(z + k) — f(2)}/h we obtain
Eﬂ%(ﬂz + k) — f(@)) = 0 f(z) = 0.

If we write f(2) = u(2) + () it follows, moreover, that u(z) and v(2)
are both continuous.
The Limit of the difference quotient must be the same regardless of
the way in which & approaches zero. If we choose real values for A,
then the imaginary part y is kept constant, and the derivative becomes
a partial derivative with respect to z. We have thus
o _du , O

‘4 o . ——n
f' oz de +e ax
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arly, if we substitute purely imaginary values ik for h, we obtain

e @y
f’(z)_“}iilé ik had ?,'@— “"38—‘}"‘”5?;;

ollows that f(z} must satisty the partial differential equation
o o

ax ¢ oy
hich resclves into the real equations

ou - v du o

a8y vy 8z

hese are the Cuuchy-Riemonn differential equations which must be

-satisfied by the real and imaginary part of any analytic function.t

¥ . We remark that the existence of the four partial derivatives in (8) is
‘§mplied by the existence of f'(z). Using (6) we can write down four

formally different expressions for f'(z); the simplest is

iy BU O
1@ =G tis

For the quantity |f'(2)!2 we have, for instance,

LAY du\? du\? dvy\: Jud du 8
W@zu(_)+(m)m du) (RN _oudy  dudy
| 8z oy dx + dz dx dy dy 0z
The last expression shows that |f/(2)|? is the Jacobian of u and » with
respect to x and y.
) We sha.ll prove later that the derivative of an analytic function is
itgelf analytic. By this fact % and ¢ will have continuous partial deriva-

tives of all _orders, and in particular the mixed derivatives will be equal.
Using this information we obtain from (6)

Py By
au=omt =0
d% 8%

Ay = S8 4 OF
dx? + ay* 0

' A i:uncti(m u which satisfies Laplace's equation Aw = 0 is said to be
- m 2. The real and imaginary part of an analytic function are thus
.m-amc. Ii two harmonic functiens w and v satisfy the Cauchy-

N equations (6), then v is said to be the conjugate harmonic fune-
t Augustin Couchy (1780-1857) and Bernhard Riemann (1826-1866) are regarded

the
e founders of complex-function theory, Riemann's work emphasized the geo-

aspeets in contrast to the purely analytic approach of Cauchy.
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tion of wu.
harmeonic funetion of —v.

This is not the place to discuss the weakest conditions of regularity |
We wish to prove, how- |
ever, that the function u -+ é determined by a pair of conjugate har- }
monic functions is always analytic, and for this purpose we make the |

which can be imposed on harmonic functions.

explicit assumption that u and » have continuous firsi-order partial
derivatives. It is proved in ealeulus, under exactly these regularity con-
ditions, that we can write

u(:z:—{—h,y-{—k)wu(m,y)mg%kvéwggk—t—s;

vz + by + §) — v(zy) =§"§h+§§k+ea,

where the remainders e, & tend to zero moi-e rapidly than h 4 7% in the
sense that &/(h + ik) — 0 and &/(h + k) — 0 for b + ¢k~ 0. With |
the notation f(2) = wu(x,y) + @(z,y) we obtain by virtue of the rela- |

tions {6)

H b+ = 5@ = (5 +i g

""”) b+ ik) + &1 + e
and hence |
Lo

fe kbt i) — 1) _du o
k- ik Oz ox

Hm
Bobiko0

We conclude that f(z) is analytic.

The real and tmaginary parts of an analylic function are harmonie func-

tions which salisfy the Couchy-Riemenn differential equations.

Conversely, if the harmonic functions u and v satesfy these equations, then |

w -+ @ is an analytic funckion.

The conjugate of a harmonic function can be found by integration, |
For instance, |

u = % — y* is harmonic and du/dx = 2z, du/dy = —2. The conju- ]

and in simple cases the computation can be made explicit.

gate function must therefore satisfy

o _
ar

v

2y: 'é_y'

= 2,

From the first equation » = 2zy + ¢(y), where ¢(y) is a function of y ;

alope. Substitution in the second equation yields ¢'(y) = 0. Hence

#(7) is a constant, and the most general conjugate function of 22 — y* is
The

2zy -+ ¢ where ¢ is a constant. Observe that z* — y* -+ 2izy = 2%
analytic fupction with the real part #? — y* is hence #* 4 ¢,

Under the same circumstances u is evidently the conjugate
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There is an interesting formal procedure which throws considerable -
on the nature of analytic functions. We present this procedure
an explicit warning to the reader that it is purely formal and does
_possess any power of proof,
- Consider a complex function f(x,y) of two real variables. Introducing
s complex variable z = x + 4y and its conjugate Z = r — 4y, we ean
= 3(z+ 2}, y = ~¥i(e — &). With this change of variable we
w consider f(z,y) as a function of 2 and Z which we will treat as inde-
& .ndent varizbles (forgetting that they are in fact eonjugate to each
er).  If the rules of caleulus were applicable, we would obtain

o 1 f!i__ﬁ)f ﬂ_}iml af . af
ax oy =s\az T i5;)

3z 2 7 2

hese expressions have no convenient definition as limits, but we can
> pevertheless infroduce them as symbolic derivatives with respect to 2
'and 2. By comparison with (5) we find that analytic functions are char-
- aeterized by the condition 8f/8Z = 0. We are thus tempted to say that
#n analytic function is independent of 2, and a function of # alone.
- This formal reasoning supports the point of view that analytic func-
~tions are true functions of a complex variable as opposed to functions
‘ which are more adequately described as complex funections of two real
_ variables.
By similar formal arguments we can derive a very simple method
which allows us to compute, without use of integration, the analytic
function f(z) whose real part is a given harmonic function u(z,y). We
remark first that the conjugate function f{z) has the derivative zero with
respect to 2z and may, therefore, be considered as a function of ; we

flenete this function by f(z). With this notation we can write down the
identity

.+.

u(zy) = @ + ) + f= -~ i)l

1t is reasonable to expect that this is a formal identity, and then it holds

‘fven W}}en x and y are complex. If we substitute z = 2/2, y = 2/2,
- We obiagin

uz/2, 2/20) = Jf(z) + J(O)).

: ::e i}; (2) is only determined up to a purely imaginary constant, we may
o ; assume that f(0) is real, which implies (0) = 4(0,0). The func-
e (2) can thus be computed by means of the formula

H2) = 2u(z/2, 2/20) — w(0,0).

l;rfyhimﬂginary constant can be added at will.
this form the method is definitely limited to functions u(z,y) which
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are rational in z and y, for the fanction must have a meaning for com- e .
plex values of the argument. Suffice it to say that the method can be§ he ay, ez, - . ., &, are not necessarily distinct. From the fac-
extended to the general case and that a complete justification can be ] Jrisation wo conclude that P(z) does not vanish for any value of g
; erent from ai, 2, . . ., .. Moreover, the factorization is uniquely

ned except for the order of the factors.
f exactly & of the o; coincide, their common value is called a zero of

given.

EXERCISES | ot the oder B W
) ) . 2} of the or . e find that the sum of the orders of the zc

1.‘ If g(w) and f(z) are analytic functions, show that g(f(z)) is a]so lynomial is equal to its degroe. More simply. i ench mmei :0;:2 Igis,

analytic. ] many times as its order indicates, a polynomial of degree 7 has exactly

ZEros.
‘ TI}e order of 2 zero « can also be determined by consideration of the
successive derivatives of P(z) for 2z = 4. Suppose that « is a zero of
- order k. T_hen we can write Pz} = (z — a)*Pu(z) with Py(a) # 0. Sue-
~ cossive derivation yields P(a) = Ploy=--. = Pt=D(5) = 0 while
. P®(0) # 0. In other words, the order of 8 zero equals the order of the
first nonvanishing derivative. A zero of order 1 1s called a simple zero
and is charactex:ized by the conditions Ple) = 0, P'(a) 0.

2 Lwaf:'z ?hr;:fiimatlon we shall prove the following theorem, known ag

2. Verify Cauchy-Riemann’s equations for the functions 22 and 2*.]
3. Find the most general harmonic polynomial of the form az® -+
by + cxy® -+ dy®. Determine the conjugate harmonie function and th
corresponding analytic function by integration and by the formal method.,
4. Show that an analytic function cannot have a constant abgolut
value without reducing to a constant. o
5. Prove rigorously that the funetions f(z) and f(2) are simultaneously
apalytic.
6. Prove that the functions u(z) and u(2) are simultaneously harmonie
7. Show that a harmonie function satisfies the formal differentis]
equation -
Fheorem ). If oll zeros of a polynoms .
2eros of the derivative P'(z) iﬁe ig ﬂ?:e za?:;‘;lfag)p?:n? @ helf plane, then ol

&y
oz = O
1.3. Polynomials. Every constant is an analytic function with ¢

? ] From (8) we obtai
derivative 0. The simplest nonconstant analytic function is z who ® LA

derivative is 1. Since the sum and product of two analytic functions a i ©® P'(z) 1 1
again analytie, it follows that every polynomial 4 Py ~ i q + o+ pa——

. PG) = a0t az+ - - - 4 e | stlrllppose that the half plane H is defined ss the part of the plane where
- ~a)/b <0 (see Chap. 1, Sec. 2.3). Ifeyisin H and 2 is not, we

is an analytic function. Its derivative is have th
e then

P'(z) = a1+ 2002 + - -+ + nazL,

The notation (7) shall imply that a. 5 0, and the polynomial is th
said to be of degree n. The constant 0, considered ag a polynomial, is
many respects exceptional and will be excluded from our considerations.§
For n > 0 the equation P(z) = 0 has at least one root. This is t
so-called fundamental theorem of algebra which we shall prove la
If Pas) = 0, it is shown in elementary algebrs that P(2) = (¢ — a) P
where P1(2) is a polynomial of degree n — 1. Repetition of this proce
finally leads to a complete factorization -

&) PGE) = auz ~ o)z —as) -« * (2 = )

f For formal reasons, if the constant 0 is regarded as 8 polynomisl, its degree
equal to — w,

2o 2—aq .

. Biit . . .
; her:;:; magmary parts of reciprocal numbers have opposite sign.
. ¢, under the same assumption, Im b(z — o)1 < (. If this ig
or all & we conclude from (9) that

Im = & _ 3 b
P(Z) kgl I]‘ﬂ Z — o < 0,

nd GOHSQQUG”}Hﬂy Pl(z) s (0.

nsgg . :
Yeon 13? atl.'per fOI:muIa,t,]on the theorem tells us that the smallest convex
) At contains the zeros of P(z) also contains the zeros of P'(z).
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1.4. Rational Functiens. We turn to the case of a rational function

Pz
Q(z)
given as the quotient of two polynomials. We assume, and this is essen-
tial, that P(2) and @{2) have no common factors and hence ne common

zeros. R(z) will be given the value « at the zeros of Q(2). It must
therefore be considered as a function with values in the extended plane,

(10) R(z) =

and as such it is continuous. The zeros of Q(2) are called poles of R(2),

and the order of a pole is by definition equal to the order of the corre-
sponding zero of @(z).
The derivative

exists only when (2) # 0. However, 8s a rational function defined by
the right-hand member of (11), R'(2) has the same poles as E(2), the order
of each pole being increased by one. In ease ¢(z) has multiple zeros,
it should be notieed that the expression (11) does not appear in reduced
form.

Greater unity is achieved if we let the variable z as well as the function
R(z) range over the extended plane, We may define R( ) as the limit
of R(z) as z -+ e, but this definition would not determine the order of a
zero or pole at e, It is therefore preferable to consider the funetion
R(1/2), which we ean rewrite as a rational function R:(z), and set

R(®) = Ri(0).

If B:i(0) = 0 or e, the order of the zero or pole at « is defined as the
order of the zero or pole of B1(2) at the origin.
With the notation

Gt ezt - - 4 ae”
bo +bie + - - + b

R(z) =

we obtain
" +ag™t 4 - - 4y
bam b1+ - - - b

where the power 27 belongs either to the numerator or to the denomi-
nator. Accordingly, if m > n R(2) has a zero of order m — n at o, if
m < nthe point at « isapoleof ordern — m,and if m =n

R(®) = a./b,, # 0, .

Ri(g) = amn
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We can now count the total number of zeros and poles in the extended
plane. The count shows that the number of zeros, including those at ®,
is equal to the greater of the numbers m and n. "The number of poles is
the same. This common number of zeros and poles is called the order of
the rational funetion.

If a is any constant, the function B(z) — a has the same poles as E(2),
and consequently the same order. The zeros of R(z) — a are roots of
the equation R(z) = @, and if the roots are counted as many times as the
order of the zero indicates, we can state the following result:

A rational function E(z) of order p has p zeros and p poles, and every
equation. R(2) = a has exacily p roots.

A rationsal function of order 1 is a linear fraction

_az+ 8B
8(z) = s
with @8 — By # 0. SBuch fractions, or linear fransformations, will be
studied at length in Chap. 3, Sec. 3. For the moment we note merely
that the equation w = 8(2) has exactly one root, and we find indeed

dw - B .
i - o

z = 8Yw) =

The transformations 8 and 81 are inverse to each other.

" The linear transformation z + a is called a parallel translation, and
1/z is an nversion. The former has a fixpoint at o, the latter inter-
changes 0 and e,

Every rational function has a representation by partial fractions. In
order to derive this representation we assume first that R(z) has a pole
at «o. We carry out the division of P(2) by Q(z) until the degree of the
remainder is at most equal to that of the denominator. The result can
be written in the form

(12) B(z) = G(2) -+ H{(z)

where G(z) is a polynomial without constant term, and H(z) is finite at <=,
'_I‘he degree of G(2) is the order of the pole at o, and the polynomial G(z)
s called the singular part of R(z) st .

Let the distinct finite peles of E(z) be denoted by B4, B, . . . , Be

The funetion R 8; + ;‘_ is a rational function of ¢ with a pole at ¢ = eo.

By use of the decomposition (12) we can write

R (ﬁ,- + %) = G + H;(®),




f
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Y

or with a change of variable

w0 25) + (L)

. _]: 5 without constant term, called
] _

Here Gj( ! ) is a polynomial in

z — B;
the singular part of R(z) at 8. The function H; (?EMB”) ig finite for

¢

g = ﬁj.
- Consider now the expression

(18) R() — GG&) — i G; (2“.—}”6)

i=1

This is a rational function which cannot have other poles than 8, B,

.o+, Band w. Atz= g we find that the two terms which become

infinite have a difference H; (z ! g) with a finite limit, and the same
- B

is true at «. Therefore (11) has neither any finite poles nor a pole at =.
A rational funetion without poles must reduce to a constant, and if this
constant is absorbed in G(z) we obtain

(14) . R@ =6+ 321 ¢ (?3-1"-”53)'

This representation is well known from the caleulus where it is used
a8 & technical device in integration theory. However, it is only with the
introduction of complex numbers that it becomes completely successful.

We shall make & minor application of (14) to the determination of all
rational functions of order 2. More precisely, we shall determine the
simplest forms which can be achieved by linear transformations of the
dependent and independent variable.

A rational function of order 2 has either one double or two simple §
poles. In the first case we can throw the pole to = by a preliminary |

Linear transformation of z.  The function will then have the form
b'z

b 2
w=az“+bz+c=a(z+§§) —i—c—-»{»&-

and by further linear transformations it can be reduced to the normal
form w = 2% In the case of two simple poles we may choose the poles
at z = 0 and z = w. The representation (14) will then have the form

(15) 1ﬂmAz+B+§
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If we replace z by 2 = z+/A/C the coefficients of 2’ and 1/# become
equal, and a further linear change of w will reduce (15) to the form

Wm%(z—}-%)

which we choose as the normal form for a rational function of order 2
with distinct poles.
EXERCISES

1. Use the method of the text to develop

2! 1 '

=1 ™ eTrheTor

in partial fractions.
2. If Q is a polynomial with distinct roots e, . . .
polynomial of degree < n, show that

son and if Pisa

P() .22": Paw)
Q@ ~ L Vale — o

3. Use the formula in the preceding exercise to prove that there exists
a unique polynomial P of degree < n with given values ¢, at the points
o (Lagrange’s interpolation polynomial).

4, What is the general form of a rational function which has absolute
value 1 on the cirele Jz| = 1? In particular, how are the zeros and poles
related to each other?

_ & If arational function is real on l2] = 1, how are the zeros and poles
situated?

2. ELEMENTARY THEORY OF POWER SERIES

gorymm.ial-s and rational functions are very special analytic funections.
the easiest way to achieve greater variety is to form limits. For

‘Instance, the sum of a convergent series is such a limit. If the terms are

:}lnetlons of o variable, so is the sum, and if the terms are analytic func-
1018, chances are good that the sum will also be analytic.
) Of all series with analytic terms the power series with complex
fﬁments are the simplest. In this section we study only the most
meflt&ry properties of power series. A strong motivation for taking
thxs‘study when we are not yet equipped to prove the most general
Perties (those that depend on integration) is that we need power series
construct the exponential function (Sec. 3). S
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2.1. Sequences. The sequence {a.}? has the limit A if to every ¢ > 0
there exists an no such that |@, — A < eforn & no. A sequence with a
finite limit ig said to be convergent, and any sequence which does not con-
verge is divergent. If limy,ne 6. = ©, the sequence may be said to
diverge to infintly.

Only in rare cases can the convergence be proved by exhibiting the limit,
so it is extremely important to make use of a method that permits proof
of the existence of a limit even when it cannot be determined explicitly.
The test that serves this purpose bears the name of Cauchy. A sequence
will be called fundamental, or a Cauchy sequence, if it satisfies the follow-
ing condition: given any & > 0 there exists an 7, such that ltn = ] < £
whenever # = no and m Z ne. The test reads:

A sequence is convergent #f and only if it s o Cauchy sequence.

The necessity is immediate. If a,— 4 we can find no such that
lan — Al < &/2 for » = no. For mn 2 e it follows by the triangle
incquality that o, — @l £ la. — Al 4 lam — A < e ‘

The sufficiency is elosely connected with the definition of real num-
bers, and one way in which real numbers can be introduced is indeed to
postulate the sufficiency of Cauchy’s condition. However, we wish to use
only the property that every bounded monotone sequence of real num-
bers has 2 limit,

The real and imaginary parts of a Cauchy sequence are again Cauchy
sequences, and if they converge, so does the original sequence. For this
reason we need to prove the sufficiency only for real sequences. We use
the opportunity to recall the notions of limes superior and limes inferior.
(Jiven a real sequence {a,}? we shall set g, = max {ey, . , .}, that
is, 4. is the greatest of the numbers a1, . . . , an The sequence {a,}7 is
nondecreasing; hence it has a limit A, which is finite or equal to + .
The number A; is known as the least upper bound or supremum (Lu.b. or
sup) of the numbers a,; indeed, it is the least number which is Z all a,.
Construct in the same way the least upper bound Ay of the sequence
{om}® obtained from the original sequence by deleting ey, . . ., a1
It is clear that {A;} is a nonincreasing sequence, and we denote its limit
by A. It may be finite, + e, or —«. Inany case we write

A = him sup a,.

o
1t is easy to characterize the limes superior by its properties. 1f Ais
finite and ¢ > O there exists an no such that 4., < A -+ ¢, and it follows
that on £ An < 4 4 ¢ for n Z ne. In the opposite direction, if
0 £ A — & for n = ng, then A, £ A — e, which is impossible. In
other words, there are arbitrarily large » for which e, > A — & If
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~ 4 o there are arbitrarily large @, and A = — if and only if an
nds to — . Inall cases there cannot be more than one number A with
ese properties.
The limes inferior can be defined in the same manner with inequalities

poversed. It is quite clear that the limes inferior and limes superior will
' be equal if and only if the sequence converges to a finite limit or diverges
4o 4+ or to — . The notations are frequently simplified to im and "
lim. The reader should prove the following relations:

&nan+@_ﬂu§ﬁ£(an+ﬁn)éﬁ_nlaﬁ+ﬁ}ﬁﬁn

lim &, + Bm 8, S [ (an + 62) < fim ey + fim B,

Now we return to the sufficiency of Cauchy’s condition. From
lan — an,| < € we obtain lon] < lety| 4 & for n Z ny, and it follows that
A = Iim @, and ¢ = lim e, are both finife. If a # 4 choose

A -9
e=y
and determine a corresponding no. By definition of @ and A there exists
an a, <a-+e and an o, > A — ¢ with mn 2 ne. It follows that
A g (A — o) + (0 — an) + (@ — @) < 3¢, contrary to the choice
of ¢. Hence a = A, and the sequence converges.

2.2. Series. A very simple application of Cauchy’s condition permits
us to deduce the convergence of one sequence from that of another. If it
is true that |b,, — b,| < la. — @] for all pairs of subscripts, the sequence
{b.} may be termed a contraction of the sequence {a.} (this is not a
standard term). Under this condition, if {@.} is a Cauchy sequence, so is
{b.}. Hence convergence of {a,} implies convergence of {ba}.

An infinite series is a formal infinite sum

artat - Fat

Associated with this series is the sequence of its partial sums

s,=m+ta-t+ - +a.

(16)

The series is said to converge if and only if the corresponding sequence is
tonvergent, and if this is the case the limit of the sequence is the sum of
the series.

. @?Dlied to o series Cauchy’s convergence test yields the following
ﬂofldltion: The series (16) converges if and only if to every & > 0 there
eXi8tS an ng such that {aw + Guer + © © © + Gaypl < efor all 5 > noand

P20. For p= 0 we find in particular that |a.] < e Hence the gen-
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eral term of a convergent series tends to zero. This condition is necessary,
but of eourse not sufficient. .

I & finite number of the terms of the series (16) are omitted, the new
series converges or diverges together with (16). In the case of conver-
gence, let R, be the sum of the series which begins with the term @,
Then the sum of the whole series is § = 8, -+ E..

The series (16) can be compared with the series

an lea) + lasl + - - Flaad + - -

formed by the absolute values of the terms. The sequence of partial
sums of (16) is a contraction of the sequence corresponding to (17), for
|G + uss + - * 0 Guinl £ 0al 4 lass] + - -+ |aagg].  There-
fore, convergence of (17) implies that the original series (16) is convergent.
A series with the property that the series formed by the absolute values
of the terms converges is said to be absolufely convergent.

2.3. Uniform Convergence. Consider a sequence of functions f.(z),
all defined on the same set E. If the sequence of values {f.(x)} con-
verges for every z that belongs to E, then the limit f(z) is again & function
on E. By definition, if ¢ > 0 and z belongs to E there exists an no such
that |f.(z) — f(z)| < & fpr n = no, but ny is allowed to depend on z.
For instanee, it is true that

lirm (1 -+ }w) =g

s 7
for all z, but in order to have |(1 + 1/n)z — 2} = (zl/n < efor n = no
it is necessary that ne > |z]/e.  Sueh an no exists for every fixed z, but
the requirement cannot be met simultaneously for all z.

We say in this situation that the sequence converges pointwise, but
not uniformly. In positive formulation: The sequence {f.(x)} converges
ungformly to f(x) on the set E if to every & > 0 there exisls an nu such that
[Foz) — f(@)] < eforall n Z no and all x in E. .

The most important consequence of uniform convergence is the
following:

The limit function of a uniformly convergent sequence of conlenuous
Ffunctions 1s ilself conlinuous.

Suppose that the functions f.(z) are continuous and tend uniformly
to f(z) on the set £, TFor any e > 0 we are able to find an » such that
lfu(x) — f@)] < e/3forallein E. Let zybe a pointin E. Because f.(z)
is continuous at zo we can find 8 > 0 such that |f.(x) — fo(xs)| < ¢/3 forall
x in E with lz — 2o < 5. Under the same condition on = it follows that

(@) — fal £ /@) — L)) -+ falz) — fulzo)] + [fulxe) — flxdl < e,

and we have proved that f(z) is continuous at Ze.
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In the theory of analytic functions we shall find uniform convergence

- much more important than pointwise convergence. However, in most

cases it will be found that the convergence is uniform only on a part of
the set on which the functions are originally defined.

Cauchy’s necessary and sufficient condition has a counterpart for
uniform convergence. We assert:

The sequence | f.(x)} converges uniformly on E ¢f and only if to every
e > 0 there exists an no such that | fu(z) — f.(2)| < efor all myn = ny and oll
zin E.

The necessity is again trivial. For the sufficiency we remark that
the limit function f(z) exists by the ordinary form of Cauchy's test. In
the inequality |fm(z) — fa(z)| < e we can keep n fixed and let m tend to
o, It follows that [f(x) — fu(@)] £ eforn = npand all xin E. Hence
the eonvergence is uniform.

For practical use the following test is the most applieable: If a
sequence of functions | f.(x)} is a contraction of a convergent sequence of
constants {a.}, then the sequence {f.(x)} is uniformly convergent. The
hypothesis means that |f.(z) — fa(z)] = len — a.| on E, and the con-
clusion follows immediately by Cauchy’s eondition.

In the case of series this eriterion, in & somewhat weaker form, becomes
particularly simple. We say that a series with variable terms

filz) +folz) 4+ » - ¢ Ffalz) S+ - - -

has the series with positive terms

I R e e

for a majorant if it is true that |f.(z)| £ Ma. for some constant M and
for all sufficiently large n; conversely, the first series is a menorant of the
second. In these circumstances we have

nl@) + fass@ + + *  + Faro@] S M@ + Gapr 4+ + + Gogs).

Thfzreiore, if the majorant converges, the minorant converges uniformly.
This condition is frequently referred to as the Weierstrass M lest. It has
the slight weakness that it applies only to series which are also absolutely
Convergent. The general principle of confraction is more complicated,
but has a wider range of applicability.

EXERCISES

1. Prove that a convergent sequence ig bounded.
2 If lim z, = A, prove that

e

Iiniwj:(ziw[-zg-!- s 2 = A

n—sw Tb
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3. Bhow that the sum of an absolutely convergent series does not
change if the terms are rearranged.

4. Discuss completely the convergence and uniform convergence of
the sequence {nz"}r.

5. Discuss the uniform convergence of the series

N
';1 n(1l <+ nz?

for real values of z. :

6. If U=wytu++ -+, V=up+uvs+ -+ - are convergent
series, prove that UV = ww; + (uws + uws) + (s + vy + uwd + - ¢ -
provided that at least one of the series is absolutely convergent. (It is
eagy if both series are absolutely convergent. Try to arrange the proof so

economically that the absolute convergenee of the second series is not
needed.)

2.4. Power Series. A power series is of the form

f]_R\ 00+G1Z+G222+"'+an2"+“‘

where the coefficients ¢, and the variable z are complex. A little more

generally we may consider series

s

(2 - zﬂ)ﬂ
¢

i

n

which are power series with respect to the center 2o, but the difference is so
slight that we need not do =0 in a formal manner.
As an almost trivial example we consider the geomelric series

14242240 Fgrd v
whose partial sums can be written in the form

1——2”_
I —z

14z4+ - ot
Since z* — 0 for |2l < 1 and [z7| 2 1 for |z] = 1 we conclude that the
geommetric series converges to 1/(1 — 2) for |z| < 1, diverges for [z} = 1.

It turns out that the behavior of the geometric series is typical.
Indeed, we shall find that every power series converges inside a circle and
diverges outside the same circle, except that it may happen that the
series converges only for z = 0, or that it converges for all values of z.
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i More precisely, we shall prove the following theorem due to Abel:

Theovem 2. For every power series (18) there exists a number R, 0 S
B £ =, called the radius of convergence, with the following properties:

(1) The sertes converges absolulely for every z with |z < R. If 0 =
< R the convergence is uniform for |2| £ p.
(1) If |2l > R the lerms of the series are unbounded, and the series is
L consequendly divergent.
(iii) In |zl < B the sum of the series is on enalytic function. The
dertvative can be obtatned by termwise differentiation, and the derived series
has the same radius of convergence.

The circle |z] = R is called the circle of convergence; nothing is claimed
about the convergenee on the circle.  'We shall show that the assertions in
the theorem are true if B is chosen according to the formula

(19) 1/R = lim sup v/]a.).

This is known as Hadamard's formule for the radius of convergence.

If 2| < R we can find p so that |2| < p < R. Then 1/p > 1/R, and
by the definition of limes superior there exists an n, such that |a,|V* < 1/p,
laa] < 1/p"forn z ne. Tt follows that |a,.z" < (|2|/p)" for large n, so that
the power series (18) has a convergent geometric series as & majorant,
and is consequently convergent. To prove the uniform convergence for
l2l £ p < B we choose a p’ with p < p' < R and find |e.2"! £ (p/p')" for
% Z ne. Since the majorant is convergent and has constant terms we
conclude by Weierstrass’s A test that the power series is uniformly
convergent.

If |2} > R we choose p so that B < p < J2|. Since 1/p < 1/R there
are arbitrarily large » such that |a.|Y™ > 1/p, la.| > 1/p*. Thus
27| > (I2)/p)" for infinitely many », and the terms are unbounded.

=
The derived seriesznaw,,z”“’ has the same radius of convergence,
)

because /5 — 1. Proof: Set v/n = 1 + 8,. Then 5, > 0, and by use
of the binomial theorem s = (1 + 8,)" > 1 4 § n{n — 1)8%. Thig gives
& < 2/n, and hence 8, — 0.

For |z] < R we shall write

1) = gaﬂz» = l2) + Bald)
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where
8u8) = GoF iz 4+ ¢+ © F Gz, Ru(d) = Y i,
b=n
and also

fi(?) = ¥ ozt = lim s(2).
1 n—s o0
We have to show that f'(z) = fi(2).
Consider the idenfily
(20) ﬂflﬂwfgzi) — filze) =

& — Z

,,(zo)) + (54(20) — Filzo)
+ (R,,(z) B, (za))

Z - &

(sm(i?l

where we assume that z # 2o and |2], [2¢] < p < B. The last term can be
rewritten as

E ak(zk—l.[,,zmzﬂ_!_ R

E=n

and we conclude that

i R.(z) —

+ ekt A,

B

Z k'akipk"i.

-
g ¢ Pri

The expression on the right is the remainder term in a convergent series.
Hence we can find no such that

for n 2 ne.
There is also an n; such that |si(z0) — fi(ee)| < &/3 for n = ny.
Choose 8 fixed # = no, 7. By the definition of derivative we can find

§ > 0 such that 0 < lz — 2| < & implies

— sp(ze)

2 - 2y

When all these inequalities are combined it follows by (20) that
f@) — f(z0)

2 — 2

8. We have provedrthat F(=20) exists and equals

- fi (20)

when 0 < |z — 2zl <
1ize).
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'- " Since the reasoning can be repeated we have in reality proved much

more: A power series with positive radius of convergence has derivatives
of all orders, and they are given explicitly by

f(?-’) = g @12 $+ a2 - - - -
f'(2) = a1+ 2as2 + Bag®* + - - -
1(z) = 200 + 60z + 12a22 + - - -

................................

FO(2) = klay + 2 (% + 1)’ gz + £+ 2)! k + 2)

In particular, if we look at the last line we see that ¢; = f®(0)/k!, and
the power series becomes

£2) = F(0) + (0)z +f”(°> s ) i (0)

2t

This is the familiar Taylor-Maclaurin development, but we have proved it
only under the assumption that f(z) has & power series development. We
do know that the development is uniquely determined, if it exists, but
the main part is still missing, namely that very analytic function has a
Taylor development.

EXERCISES
1. Expand (1 - Z)™™ m a positive integer, in powers of z.

2. Expand 2 ;’:f What is the radius of

of z - 1.

in powers

eonvergence?
3. Find the radius of convergence of the following power series:

E nrzm, 2 fw’;, E nlan, 2 a2 (lgl < 1), 2 z"!

4. If Za,z" has radius of convergence R, what is the radius of con-
Vergence of Za,2#? of Talzn?

5. If f(2) = Za.z", what is Zn’a,z"?
3- If Za.2* and Zb,2" have radii of convergence E; and R, show that
® radius of convergence of Za,b.2” is at least RyRa.

% If By o {@o|/|nia] = R, prove that Za,e” has radius of con-
ence R,

8. For what values of z is

a8
o
=
N
~
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9. Bame question for XPONENTIAL AND TRIGONOMETR|C FUNCTIONS

< he person who approaches calculus exelusively from the point of view of
g T %ea.l numbers will not expect any relationship between the exponentia]
unc

function e* and the trigonometric functions cos z and sin . Indeed, these
functions seem to be derived from completely different sources and with
different purposesin mind. He will notice, no doubt, a similarity between
the Taylor developments of these functions, and if willing to use imaginary
arguments he will be able to derjve Euler's formulg g = co8 & -+ { sin ¢
; a8 a formal identity. But it took the genius of a Gauss to analyze its full

2.5. Abel's Limit Theorem. There is g second theorem of Abel's :
which refers to the case where a power series converges at a point of the 4
circle of convergence. We fose no generality by assuming that B — 1
and that the convergence takes place at z = 1.

Theorem 3. iy E a. converges, then f(z) = 2 x2" lends to F(1) gs 2
0 [

approaches 1 in such o way that |1 — 2l/(1 — l2]) remains bounded, these functions. At the same time we ean define the logarithm as the

inverse function of the exponential, and the logarithm leads in turn to the

correct definition of the argument of a complex number, and hence to the

nongeometric definition of angle,

Remark, Geometrically, the condition means that z stays in an angle
<180° with vertex 1, symmetrically to the part (— ®,1} of the real axis,
It is customary to say that the approach takes place in a Stolz angle.

3.1, The Exponential, we may begin by definin th ;
Junction as the solution of the cfiﬂ'erentigl equja;tion & the eeponential

(21) @) = 1)

with the initig) value f(0) = 1. we solve it by setting
f(z)v“mao+axz+ IR I WL N RN
f"(z) = @y +2(122 ..i,. O ‘!”“ﬂa,ﬁz"’“]‘ + PP

If (21) is to be satisfied, we must havea, , = 20, and the initial condition
Eives t;:) = 1. It follows by induction that @y = 1 /pl,
The solution is denoted by 2 ‘ i
' olut} _ Y € or exp z, depending on purely typo-
Eraphiea] considerations. We must show of course that the series

Proof. We may assume that E ax = 0, for this can be attained by adding |
0

a constant to a,. We write n =00+ a1+ - - + q, and make use of
the identity (summation by parts)

s8le) =aotaw+ -+ g = Sot (81— szt - - A (s, = sy
= 8o(l — 2) -+ 84(z — 2) 4 - - Sn—1{z"l — 27) + 5,27
= (1 —~ 2)(s0 + 81z + -+ 8n12™ ) 4 5,27,

But s,2" — 0, 50 we obtain the representation

J@) =1 -2 Y s
G
2 o
(22) g’=1+§+%+...+f.+...

We are assuming that il -z = K1 ~ 2]}, say, and that s, 0. 4 -

Choose m so large that s, < ¢ for n £ m. The remainder of the
series Xs.z", from # = m o, is then dominated by the geometric serjes

Converges, It does 50 in the whole plane, for VL (proof by the
EE 2l = ejefm/(1 — lel) < ¢/ ~ L2]). It follows that
m

¥ Feader),

.I.t i8 & consequence of the differentia) equation that e satisfies the
Wion theorem

eoth e° - gb,

mw1
NS 1 =[S et] 4 Ko

Ffieetil,_ we find that Dier - e = e oo T e (~e2) = 0, Hence
) €™*i8 a constang, The value of the constant is found by setting » = 0,
© conclude that - €7 = gt nnd (23) follows for z - G ¢ =g - p,

The first term on the right can be made arbitrarily small by choosing 2
sufficiently close to 1, and we conclude that f(&) > Owhenz-— 1 subject to
the stated restriction, 1
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Remark: We have used that f(2) is constant if f(2) is identically zero. '

This is certainly so if f is defined in the whole plane. Foriff = u + @ we
obtain a_';r, = e = e m gg = 0, and the real version of the theorem shows

that f is constant on every horizontal and every vertical line.

As a particular case of the addition theorem ¢* - ¢+ = 1, ‘Thisshows
that e is never zero. Tor real x the series development (22) shows that
e* > 1forz > 0, and since ¢ and e~ arereciprocals, 0 < ¢¢ < 1forz < 0.
The fact that the series has real coefficients shows that exp 2 is the complex
conjugate of exp 2. Hence |¢¥]? = ¥ - ¢ = 1, and e %] = ¢,

3.2. The Trigonometric Functions. 'The trigonometric funetions are
defined by

iz g iz . iz
(24) cos 2 = ‘:’_:%L dne = ST
Substitution in (22) shows that they have the series developments
2 4
ceszml-%.;.%w BN

(25) .

. 28
s;nzmz—~§~!+—5—!w

For real z they reduce to the familiar Taylor developments of cos 2 and
sin z, with the signifieant difference that we have now redefined these
functions without use of geometry.

From (24) we obtain further Euler’s formula

(26) €% = cos z -+ i %in 2

as well as the identity 7

N cos?z 4 sin?z = 1,

It follows likewise that

(28) Dcosz = — sin g, D sin z = cos 2.
The addition formulas

cos (6 + ) = cosacos b —sinesind
sin (@ +b) =cosasinb+sinacosd

are direet consequences of (24) and the addition. theorem: for the exponen-
tial function.

The other trigonometric functions tan z, cot z, sec z, cosec z are of
secondary importance. They are defined in terms of cos 2 and sin 7 in the
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ustomary manner. We find for instance
4 L€ — g
tan z = —¢ gézm"$je~__'-a'

i Observe that all the trigonometric funetions are rational functions of e’

b EXERCISES

1. Find the values of sin ¢, cos 4, tan (1 4 ).

2. The hyperbolic cosine and sine are defined by coshz = (e* - ¢79)/2,
sinh z = (¢ — ¢2)/2. Express them through cos 4z, sin zz. Derive the
addition formulas, and formulas for cosh 22, sinh 2,

3. Use the addition formulas to separate cos (z -+ ¢y), sin (x ~+ ¢y) in
real and imaginary parts.

4. Show that

jcos 2? = sinh?y 4 cos?x = cosh?y — sinfz = -é {cosh 2y -} cos 2x)
and

jsin 2|? = sinh?y 4 sin?z = cosh?y — cos?z = % {cosh 2y — cos 2z).

3.3, The Periodicity, We say that f{2) has the period ¢cif f(z + ¢) = f(2)
forall z.  Thus a period of ¢* satisfies e+ = ¢2, or e¢ = 1. It follows that
¢ = fo with real w; we prefer to say that w I8 a period of ¢=. We shall
show that there are periods, and that they are all integral multiples of a
positive period wq.

Of the many ways to prove the existence of a period we choose the
following: From Dsiny = cosy = 1 and sin 0 = 0 we obtain sin y < y
for y > 0, either by integration or by use of the mean-value theorem. In
the same way D cosy = —siny > —yandcos0 = 1 givescosy > 1 —
#*/2, which in turn leads to sin y > y — %%/6 and finally to cos y < 1 —
¥/2 4 y*/24. This inequality shows that cos v/3 < 0, and therefore

there is a 3, between 0 and /3 with cos yo == 0. DBecause
cos® yo + sin?ye = 1

Wwe have sin ¢ = + 1, that is, e = + ¢, and hence e*®» = 1. We have
shown that 4y, is a period.

Actually, it is the smallest positive period. To sec this, take 0 < y
< ¥e. ‘Then sin y > y(1 — ¥%/6) > y/2 > 0, which shows that cos y is
Stricily decreasing. Because sin y is positive and cos?y + sin?y = 1 it
follows that sin y is strictly increasing, and hence sin y < sin yp = L.
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The double inequality 0 < sin y < 1 guarantees that ¢% iz neither +1 nor
+4. Therefore e 5 I, and 4y, is indeed the smallest positive period.
We denote it by w,.

Consider now an arbitrary period w. There exists an integer n such
that nws S @ < {(# 4+ Lwe If o were not equal to nw,, then w — nwe
would be a positive period < «p. Since this is not possible, every period
must be an integral multiple of we. '

The smallest positive period of € is denoted by 2x.
In the course of the proof we have shown that

et = § em = —1, i = 1,
These equations demonstrate the intimate relationghip between the num-
bers e and . :

When yincreases from 0 to 2rr, the point w = €% describes the unit circle
jwo] = 1 in the positive sense, namely from 1 over 4 to —1 and back over
-1 to 1. For every w with jw| = 1 there is one and only one y from the
half-open interval 0 £ y < 2x such that w = e,  All this follows readily
from the established fact that cos y is strictly decreasing in the “first
quadrant,” that is, between 0 and #/2.

From an algebraic point of view the mapping w = e establishes a
homomorphism between the additive group of real numbers and the
multiplicative group of complex numbers with absolute value 1. The
kernel of the homomorphism is the subgroup formed by all integral
multiples 2zn.

3.4. The Logarithm. Together with the exponential function we must
also study its inverse funection, the logarithm. By definition, z = log w is
a root of the equation ¢* == w. TFirst of all, since ¢* is always 320, the
number 0 has no logarithm. For w s 0 the equation e*¥# = o is equiva~
lent to

(29 g = ], el = /.
The first equation has a unique solution z = log ||, the real logarithm of
the positive number lw]. The right-hand member of the second equation
(29) is a complex number of absolute value 1. Therefore, as we have just
seen, it has one and only one solution in the interval 0 £ y < 2». Inaddi-
tion, it is also satisfied by all y that differ from this solution by an integral
multiple of 2r. We see that every complex number other than 0 has infinitely
many logarithms which differ from each other by multiples of 2mi.

The imaginary part of log w is also called the argumeni of w, arg w, and
it is interpreted geometrically as the angle, measured in radians, between
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itive real axis and the half line from 0 through the pointw. Accord-
4 this definition the argument has infinitely many values which differ
qultiples of 27, and

log w = log |wj + 7 arg w.

a change of notation, if |z} = r and arg z = 6, then z = re%. This
tion is so convenient that it is used constantly, even when the expo-
ial function is not otherwise involved.

By convention the logarithm of a positive number shall always mean
real logarithm, unless the contrary is stated. The symbol ¢*, where
and b are arbitrary complex numbers except for the condition a = 0, is
vays interpreted as an equivalent of exp (blog a). If @ is restricted to
gitive numbers, log a shall be real, and o® has a single value. Otherwise
ais the complex logarithm, and a* bas in general infinitely many values
ch differ by factors e, There will be a single value if and only if b
an integer n, and then a® can be interpreted as a powerof cor a~*. Ifbis
rational number with the reduced form p/g, then a® has exactly ¢ values
d can be represented as v/a”.

The addition theorem of the exponential function elearly implies

log (2122) = log 21 + log 2,
arg (z)22) = arg z -+ arg z,

but only in the sense that both sides represent the same infinite set of

»eomplex numbers.  If we want to compare a value on the left with a value

on.the right, then we can merely assert that they differ by a multiple of
2ri (or 2r). (Compare with the remarks in Chap. 1, Sec. 2.1.)

Finally we discuss the inverse cosine which i obtained by solution of
the equation

cos z = é (e + e ) = w0,

This is & quadratic equation in e* with the roots

tonsequently

z =arc cos w = —i log (w & 4/w? — 1).

¢an also write these values in the form

arc cos w = -+ { log {(w 4+ \/WY),

Wt Vol T and w — v/w? — 1 are reciprocal numbers. The
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infinitely many values of arc cos w reflect the evenness and periodie
cos z. The inverse sine is most easily defined by

arc sin w ﬂg—m arc cos w.

1t is worth emphasizing that in the theory of complex analytic £
tiong all elementary transrendental functions can thus be expre
through e and its inverse log z. In other words, there is essentially

one elementary transcendental function.

EXERCISES
4. For real y, show that every remainder in the series for cos y ad
sin y has the same sign as the leading term (this generalizes the inequ
ties used in the periodicity proof, Sec. 3.3).
2. Prove, for instance, that 3<7 <23
3. Find the value of e*forz = — %: %m’, é-‘ri.
4. For what values of zis ¢f equal to 2, —1,7, —3/2, —1 — 4,14
5. Find the real and imaginary parts of exp (e). '
6. Determine all values of 2 ¢, (=D
7. Determine the real and imaginary parts of 2*
8. Express arc tan w in terms of the logarithm.
9. Show how to define the “gngles” in a triangle, bearing in mind
they should lie between 0 and . With this definition, prove that the
of the angles is 7.
10. Show that the roots of the binomial equation #* = @ are¢ the v
tices of a regular polygon (equal sides and angles).

ANALYTIC FUNCTIONS
AS MAPPINGS

A functior} w = f(z) may be viewed as a mapping which repre-
sents a_pomt z by its image w. The purpose of this chapter is to
stud)f, in a preliminary way, the special properties of a mapping
that is defined by an analytic function.

In orde}‘ to carry out this program it is desirable to develop
the underlying concepts with sufficient generality, for otherwise
we W.O}ﬂd soon be foreed to introduce a great nm;}ber of ad hec
d:eﬁmt:ons whose mutual relationship would be far from clear
Smc_e present-day students are exposed to abstraction and gen»:
erality at quite an early stage, no apologies are needed. It is
perhaps more appropriate to sound a warning that greatest possi-
ble generality should not become a purpose.
topoilon the f{iirst sea‘tion we develop tl‘ae fundamentals of point set
opole agf; an metr.ae spaces. There is no need to go very far, for
ctudy of eo;acgm 18 Wl-th the properties that are essential for the
el Qnafyt}.? .funeftlons. ‘ If the s:tudent feels that he is already
mrmini}ﬂgyﬁ%mxh&r with this material, he should read it only for
funcggl:sauthqr beIieve.s that proficiency in the study of analytic
o Skmreq$ﬁes a mixture of geometrie feeling and computa-
with th ﬁ. esecond and thf;:d sections, only loosely connected

e first, are expressly designed to develop geometric feeling

b "
y way of detailed study of elementary mappings. At the same

tim : i i

by ;eu;i try to st-;.:es‘s rigor in geometric thinking, to the point
. e geometric image becomes the guide but not the founda-
lon of reasoning.

L
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1. ELEMENTARY POINT SET TOPOLOGY

The branch of mathematies which goes under the name of topology is con-
cerned with all questions directly or indirectly related to continuity. The
term is traditionally used in a very wide sense and without strict limits.
Topological considerations are extremely important for the foundation of
the study of analytic functions, and the first systematic study of topology
was motivated by this need.

The logical foundations of set theory belong to another diseipline.
Our approach will be quite naive, in keeping with the fact that all our
applications will be to very familiar objects. In this limited framework no
logieal paradoxes can oceur.

1.1. Sets and Elements. In our language a set will be a collection of
identifiable objects, its elements. The reader is familiar with the notation
z € X which expresses that z is an element of X (as a rule we denote sets
by capital letters and elements by small letters). Two sets are equal if
and only if they have the same elements. Xisa subset of Y if every ele-
ment of X is also an clement of ¥, and this relationship is indicated by
X C Yor YO X (we do not exclude the possibility that X = Y). The
erapty set i denoted by 0 (the possibility of confusion with the number O
is very remote),

A set can also be referred to as a space, and an element as a point.
Subsets of a given space are usually called point sets. This lends a
geometric flaver to the language, but should not be taken too fiterally.

For instance, we shall have occasion to consider spaces whose elements are

functions: in that case a “point” is a function.
H

The intersection of two sets X and Y, denoted by X M Y, is formed by ]

all points which are elements of both X and Y. The union X U Y con-
sists of all points which are elements of either X or Y, including those which
are elements of both.t  One can of course form the intersection and union
of arbitrary collections of sets, whether finite or infinite in nuinber.

The complement of a set X consists of all points which are not in X; |

it will be denoted by ~X. We note that the complement depends on the

totality of points under consideration. For instance, a set of rea) numbers |
has one complement with respect to the real line and another with respect |
to the complex plane. More generally, if X C Y we can consider the §
relative complement ¥ ~ X which consists of all points that arein ¥ but §

not in X (we find it clearer to use this notation only when XCon.

+ The notations XY for intersection and X -+ ¥ for union are obsolete.
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It is helpful to keep in mind the distributive laws

XVUNDH=XUNNEULD
XNFUDH)=XNNUENZL

and the De Morgan laws

~EXUY) = ~XN~Y
~XNY) = ~XU~Y.

These are purely logical identities, and the : .
. aa v have obviou o
to arbitrary collections of sets. ’ 8 generalizations

;.2. Me_tric S?aces. For all considerations of limits and continuity it
is ess.ent-lz.il to give a precise meaning to the terms “sufficiently near” an
“arbx’arfsmrﬂy near.”  In the spaces R and C of real and complex numbers
respectively, such nearness can be expressed by a quantitative cend.itim;
[z — y| < e. For instance, to say that a set X confains all z sufficientl
near to y means that there exists an ¢ < 0 such that ze X wheneveg
| — yl < e Similarly, X contains points arbitrarily near to y if to e
e>0 there exists an z € X such that |z — y| < e, e
) What we need to describe nearness in quantitative terms is obvious!

a dzstt.’mce d(mzy) between any two points. We say that a set Sisa meirfi);
space if the‘re is defined, for every pairz € S, y € S, anonnegative real n{xm-
ber d(z,y) in such a way that the following conditions are fulfilled:

1. d(z,y) = 0if and only if z = y. ‘

2. d(y,x) = dlzy).

3. d(z,2) £ d(z,y) + d(y,2).
The iiist condition is the tréangle tnequality.

for instance, R and C are metric spaces with = |z —
The n-dimensional euclidean space R" is thf: set o?rreal tfz(-:iﬁj;))les ook

$=($1’,‘_’x”)

With a distance defined by d(zy)? = Yz — y)%. We recall that we
1

h . .
ave defined a distance in the extended complex plane by

d(z,7) = 2z — 2|
VA DA+ T7H

b (sce . .
: Chap. 1, Sec. 2.4); since this represents the euclidean distance between

. " stereo ici . .
 oby; graphic images on the Riemann sphere, the triangle inequality is

ously fulfilled. An example of a function space is given by Cla,bl.
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the set of all continuous functions defined on the intervala £ . < b 1t
becomes a metric space if we define distance by d(f.g) = max |f(z) — g(=)].

In terms of distance we introduce the following terminology: The set
Ns(y) of all poinis z € 8 with d(z,y) < §is called the $-neighborhood of y.
More essential still is the definition of an arbitrary neighborhood:

Definition 1. 4 set N C 8 is called a neighborkood of y if it contains a
S-neighborhood Ns(y).

In other words, a neighborhood of y is a set which contains all points
sufficiently near to y. We use the notion of neighborhood to define open
set:

Definition 2. A set 7s an open sel if & is a neighborkood of euch of s
elements.

The definition is interpreted to mean that the empty set is open (the
condition is fulfilled because the set has no elements). 'The following is
an immediate consequence of the triangle inequality:

Lyvery S-neighborhood is an open set.

Indeed,if z € Ns(y), then § = § — d{y,2) > 0. The triangle inequal-
ity shows that Ny (2) C Ns(y), for d(z,2) < & gives

d(zy) < & +dy,;2) = 8.

Hence Ni{y) is a neighborhood of z, and since z was any point in Ns(y),
we conclude that Ny(y) is an open set. ‘

For instance, in the complex plane a &-neighborhood Ni(ze) is an
open disk with center 2z, and radius §; it consists of all complex numbers z
which satisfy the inequality |z — 2l < 8f We have just proved that it
is an open set, and the reader is urged to inferpret the proof in geometric
terms.

It is eonvenient to consider not only open sets, but also closed sets.
From a logical point of view this contributes nothing new, for by defini-
tion a set is closed if its complement is open.  In positive formulation, X
28 closed if ¢ conlains all points x with the property that every Ny(x) inter-
sects X.

The reader should beware of a false impression that the terminology
could easily convey: the terms “open’ and “closed” are nof contradictory.

t The standard notation is to write Ne(ze) = {z; |z — 2 < 8}. We shall use
this notation very sparingly. Even if the practice is slightly objectionable, we shall
not hesitate to speak of “the disk [z — 2 < 8" It is to be clearly distinguished from
“the circle |z — zg] = 8.7
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The empty set 0 and the whole space & are at the same time open-and
closed, and there may be other sets with the same property. ’

The following properties of open and closed sets are fundamental:

The intersection of a finite number of open sets is open. '

The union of any collection of open sets is open.

The union of o finite number of closed sets is closed,

The intersection of any collection of closed sets i3 closeil.

The proofs are so obvious that they can be left to the reader. It
should be noted that the last two statements follow from the first two by
use of the De Morgan laws. :

There are many terms in common usage which are directly related to
the idea of open sets. A complete list would be more confusing than
helpful, and we shall limit ourselves to the following: interior, closure,
boundary, exterior,

(i) The interior of a set X is the largest open set contained in X, It
exists, for it may be characterized as the union of all open sets CX. It
can also be desceribed as the set of all points of which X is a neighborhood.
We denote it by Int X.

(i) The closure of X is the smallest closed set which contains X, or
the intersection of all closed sets DX. A point belongs to the closure of
X if and only if all its neighborhoods intersect X. The closure is usually
denoted by X-, infrequently by CI X.

(iii) The boundary of X is the closure minus the interior. A point
belongs to the boundary if and only if all its neighborhoods intersect both
X and ~X. Notation: Bd X or aX.

(iv) The exterior of X is the interior of ~X. It is also the comple-
ment of the closure. As such it can be denoted by ~X.

Observe that Int X C X C X~ and that X is open if Int X = X,
closed if X~ = X. Also, X C YimpliesInt X C Int ¥, X~ C ¥-. For
added convenience we shall also introduce the notions of ssolated point
and accumulation poinl. We say that z € X is an isolated point of X if
has a neighborhood whose intersection with X reduces to the point z.
An.accumuiatien point is a point of X~ which is not an isolated point.
1t_:s clear that z is an accumulation point of X if and only if every
teighborhood of « contains infinitely many points from X.

EXERCISES

. L. If S is a metric space with distance function d(z,y), show that S
With the distance function 3(z,y) = d(z,y)/[1 + d{z,y)] is also a metric
SPace. The latter space is bounded in the sense that all distances lie

- Under & fixed bound.

% Buppose that there are given two distance functions d(z,y) and
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di(z,y) on the same space 8. They are said to be equivalent if they deter-
mine the same open sets. Show that d and d, are equivalent if to every
¢ > 0 there exists a 8 < 0 such that d(z,59) < 8 implies di(z,y) < ¢, and
vice versa. Verify that this condition is fulfilled in the preceding exercise.

3. Show by strict application of the definition that the closure of
[z-——zg§<§islz-—za\§6. ,

& 1f X is the set of complex numbers whose real and imaginary parts
are rational, what is Int X, X, X7

5. It is sometimes typographically simpler to write X’ for ~.X. With
this notation, how is X'~ related to X? Show that X~~~ = X"

6. A setis said to be discrete if all its points are isolated. Show that
a discrete set in R or C is countable.

7. Show that the accumulation points of any set form a closed set.

1.3. Connectedness. If E is any nonempty subset of a metric space S
we may consider F as a metric space in its own right with the same dis-
tance function d(z,y) as on all of S. Neighborhoods and open sets on E
are defined as on any metric space, but an open set on E need not be open
when regarded as a subset of S. To avoid eonfusion neighborhoods and
open sets are often referred to as relative neighborhoods and relatively
open sets. As an example, if we regard the closed interval 0 £ z = 1 as
a subspace of B, then the semiclosed interval 0 = z < 1is relatively open,
but not open in B. Henceforth, when we say that a subset K has some
specific topological property, we shall always mean that it has this prop-
erty as a subspace, and its subspace topology is called the relative topology.

Intuitively speaking, a space i8 connecled if it consists of a single
piece. This is meaningness unless we define the statement in terms of
nearness. The easiest way is to give a negative characterization: S is not
connected if there exists a partition S = A \J B inio open subsels A and B.
1t is understood that A and B are disjoint and nonempty. The connected-
ness of a space is often used in the following manner: Suppose that we are
able to construct two complementary open subsets A and Bof 8;if Sis
connected, we may conclude that either A or B is empty.

A subset E C S is said to be connected if it is connected in the rela-
tive topology. At the risk of being pedantic we repeat:

Definition 3. A subsel of a mefric space is connected if of cannol be repre-
sended as the union of two disjoint relatively open sets none of which ts empty.

If E is open, a subset of E is relatively open if and only if it is open.
Similarly, if E is closed, relatively closed means the same as closed. We
can therefore state: An open set 48 connected if it cannot be decomposed into
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two open. sels, and a closed set is connected if &t cannot be decomposed into two
closed sefs. Again; none of the sets is allowed to be empty.

Trivial examples of connected sets are the empty set and any set
that consists of a single point.

In tht? ease of the real line it is possible to name all connected sets
The most important result is that the whole line is connected, and this ié
indeed one of the fundamental properties of the real—number’system

An dinterval is defined by an inequality of one of the four tyi)e&'
a<x<h asz<bh a<z=h as2=5bt For a= —w» 01:
b = - co this includes the semi-infinite intervals and the whole line.

Theorem 1. The nonemply connecled subsels of the real line are the
infervals.

We reproduce one of the classical proofs, based on the fact that any
monotone sequence has a finite or infinite limit.

Suppose that the real line R is represented as theunion R = A\ B
of two disjoint closed sets. If neither is empty we can find g, ¢ 4 and
by € B; we may assume that a; < bi. We bisect the interval (a;,b,) and
nofce t}‘xat one of the two halves has its left end point in 4 and its ri’ght end
Pomt in B. We denote this interval by {@.,b:) and continue the i)rocess
mdeﬁmtefly. In this way we obtain a sequence of nested intervals
(‘an,.b,i) with g, € 4, b, € B. The sequences {a.} and {b,} have a common
Zﬁut S BSin%e A and B are closed ¢ would have to be a common point of

an .. . .

S i.s m::; :;lét.radzctwn shows that either A or B is empty, and
With minor modifications the same proof applies to any interval.

be anBefzI"e proving the converse we make an important remark, Let E
- F ar Czhm'ry subset of R and call & a lower bound of E if o < z for all
eomhl nasider iihe set A of all Imiver bounds. It is evident that the
Whel}:eemex}t of A is open. .As to A itself it is easily seen that A is open
o \;e:{ 1{‘.4 does }aot contain any largest number. Because the line is
. ete , 4 and its complement cam_:oF ‘bot-h be open unless one of them
tainsl; f There are thus th.ree possibilities: either 4 is empty, A con-
4o ix;ge:t n'umb;r, or A is the whole line. The largest number a of
denots & s}, is cal e(:l the greatest lower bmfmd of E; it is ecommonly
g ot as g. b z or inf x for xe E. If A is empty, we agree to set
Ventionw’ and if A is the whole line we set @ == 4. With this con-
omer boevery. sc-at of rea]l numbers has a uniquely determined greatest

und; it is clear that ¢ = -+ o« if and only if the set F is empty.

t is commeon usage to denote the open interval by (a,b) and the closed interval

1
by a5,
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The least upper bound, denoted as Lu.b. z or sup z for z € E, is defined in
a corresponding manner.}

Returning to the proof we assume that F is o connected set with the ]

greatest lower bound ¢ and the least upper bound b, All points of E lie
between a and b, limits included. Suppese that a point £ from the inter-
val ¢ < £ < b did not belong to E. Then the opensetsz < tandx > E
would cover E, and because F is connected one of them must fail to inter-
seet B, Suppose, for instance, that no point of K lies to the left of &, In
this ease £ would be a lower bound in contradiction with the fact that ¢
was the greatest lower bound. The opposite assumption would lead to a
similar contradiction, and we conclude that § must belong to E. Hence

E is identical with one of the four intervals (a,b), and. the proof is

completed.

In the course of the proof we have introduced the notions of greatest
lower bound and least upper bound. If the set is closed and if the bounds
are finite, they must belong to the set, in which case they are called the
minimum and the maximum. In order to be sure that the bounds are
finite we must know that the set is not empty and that there is some
finite lower bound and some finite upper bound. In other words, the set
must lie in a finite interval; such a set is said to be bounded. We have
proved:

Theorem 2. Any closed and bounded nonempty set of real numbers has
o mingmum and ¢ maximum.

The structure of connected sets in the plane is not nearly =o simple a5
in the case of the line, but the following characterization of open eon-
nected sets contains essentially all the information we shall need.

Theorem 3. A nonemply open set in the plane is connected if and only

if any two of s points can be joined by ¢ polygon which lies in the sel.

The notion of a joining polygon is so simple that we need not give a
formal definition.

We prove first that the condition is necessary. Let A be an open con- f
nected set, and choose a point a € A. We denote by A, the subset of A ]
whose points can be joined to @ by polygons in 4, and by 4, the subset |
whose points cannot be so joined. Let us prove that A; and 4; are both |
open. First, if a; € A, there exists a neighborhood |z — @3] < ¢ contained §
in A. All points in this neighborhood can be joined to a; by a line seg- §
ment, and from there to a by a polygon. Hence the whole neighborhood }

1 The supremum of a sequence was introduced already in Chap. 2, See. 2.1,
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is contained in Ay, and A4, is open. Secondly, if as e A, let |z — ay] < &
be a neighborhood contained in A. If a point in this neighborhood could
be joined to a by a polygon, then as could be joined to this point by a line
segment, and from there to a. This is contrary to the definition of A,
and we conclude that A, is open. Since A was connected either 4, or
Ay must be empty. But A contains the point a; hence A, is empty, and
all points can be joined to a. Finally, any two points in A can be joined
by way of ¢, and we have proved that the condition is necessary.

For future use we remark that it is even possible to join any two points
by a polygon whose sides are parallel to the coordinate axes. 'The proof
is the same.

In order to prove the sufficiency we assume that A has a representa-
tion A = A, \J A, as the union of two disjoint open sets. Choose a, € Ay,
as € Ay and suppose that these points can be joined by a polygon in A.
One of the sides of the polygon must then join a point in A, to a point in
A, and for this reason it is sufficient to consider the case where a; and as
are joined by a line segment. This segment has a parametric representa-
tion z = ay + #(@s — a,) where ¢ runs through the interval 0 < ¢ < 1.
The subsets of the interval 0 < { < 1 which correspond {o points in A4,
and As, respectively, are evidently open, disjoint, and nonvoid. This
contradicts the connectedness of the interval, and we have proved that
the condition of the theorem is sufficient.

The theorem generalizes easily to R* and C~.

Definition 4. A nonempty connected open set is called a region.

By Theorem 3 the whole plane, an open disk lz — a| < p, and & half
pIa_ne are regions. The same is true of any &neighborhood in R», A
region is the more-dimensional analogue of an open interval. The closure
of a region is called s closed region. It should be observed that different
Tegions may have the same closure.

) It happens frequently that we have to analyze the structure of sets
which are defined very implicitly, for instance in the course of a proof.
In such eases the first step is to decompose the set into its maximal con-
nected components. As the name indicates, 8 component of a set is a
Comnected subset which is not contained in any larger connected subset,

Theorem 4. Every set has a unigue decomposition into components.
If E is the given set, consider a point ¢ € £ and let C(a) denote the

::eﬂlen' of all connected subsets of E that contain a. Then ((a) is sure to
ntain g, for the set consisting of the single point a is connected. If we
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can show that C(a) is connected, then it is & maximal connected set, in
other words a component. It would follow, moreover, that any two
components are either disjeint or identical, which is precisely what we
want to prove. Indeed, if ¢ € C(a) M C(b), then C(a) C C(c) by the
definition of C{c) and the connectedness of C(a). Hence ¢ € C{c), and by
the same reasoning C(c) C C{(a), so that in fact C(a) = C(c). Similarly
C®) = Cl), and consequently Cla) = C(H). We call C{@) the com-
ponent of a.

Suppose that C({a) were not connected. Then we could find relstively
open sets A, B # 0 such that C(a) = A\VEB, AMNB =0. We may
assume that ¢ € A while B containg a point b. Since be C{a) there is a
connected set Ey C K which contains ¢ and b. The representation
Eo = (Fe M A) U (E, M B) would be a decomposition into relatively
open subsets, and since ae By A, beEy M B neither part would be
empty. 'This is a contradiction, and we conclude that C{a) is connected.

Theorem 5. In R" the components of any open set are open.

This is a consequence of the fact that the s-neighborhoods in R” are
connected. Consider a e C{e) C E. If E is open it contains an N(a)},
and because Ny(a) is connected Ns(e) C C(a). Hence ({a) is open. A
little more generally the assertion is true for any space 8 which is locally
connected. By this we mean that any neighborhood of a point @ contains
a connected neighborhood of a. The proof is left to the reader.

In the ease of R* we can conclude, furthermore, that the number of
components is countable. To see this we observe that every open set
must contain a point with rational coordinates. The set of points with
rational coordinates is countable, and may thus be expressed as a sequence
{we}. TFor each component C(g), determine the smallest % such that
pi€ Cla). To different components correspond different k. We con-
clude that the components are in one-to-one correspondence with a
subset of the natural numbers, and consequently the set of components.is
countable.

For instance, every open subset of R is a countable union of disjoini
open intervals.

Again, it is possible to analyze the proof and thereby arrive at a
more general result, We shall say that a set ¥ is dense in S if B~ = §,
and we shall say that a metric space is separable if there exists a countable
subset which is dense in 8. We are led to the following result:

In a locally connected separable space every open set is a coundable union
of disjoint regions,
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EXERCISES

1. If X 8, show that the relatively open (closed) subsets of X are
precisely those sets that can be expressed as the intersection of X with an
open (closed) subset of S.

2. Show that the union of two regions is a region if and only if they
have a common point,

3. Prove that the closure of & connected set is connected.

4. Let A be the set of points (z,1) e R2withz = 0, ly] £ 1, and let B
be the set withx > 0,y = sin 1/2. Is A\U B connected?

5. Let ¥ be the set of points (z,y) € R?such that 0 £ ¢ = 1 and either
y =0 or y = 1/n for some positive integer n. What are the com-
ponents of E? Are they all closed? Are they relatively open? Verify
that F is not locally connected.

6. Prove that the components of a closed set are closed (use Ex. 3).

7. A setis said to be diserete if all its points are isolated. Show that a
discrete set In a separable metric space is countable,

1.4. Compactness. The notions of convergent sequences and Cauchy
sequences are obviously meaningful in any metric space. Indeed, we
would say that z, - 2 if d{z.,2) — 0, and we would say that {z.} is a
Cauchy sequence if d(z,,2x) — 0 a8 n and m tend to ., It ig clear that
every convergent sequence is a Cauchy sequence. Tor R and C we have
proved the converse, namely that every Cauchy sequence is convergent
(Chap. 2, Sec. 2.1), and it is not hard to see that this property carries over
to any R® In view of its importance the property deserves a special
name,

Definit'on 5. A metric space 1s said to be complete if every Coauchy
sequence is convergent.

- A subset is complete if it is complete when regarded as a subspace.
The reader will find no difficulty in proving that a complete subset of a
melric space is closed, and that a closed subset of a complete space is complete.

We shall now introduce the stronger concept of compactness. It is
?ﬁmnger than completeness in the sense that every compact space or set
18 complete, but not conversely. As a matter of fact it will turn out that

¢ compact subsets of R and C are the closed bounded sets. In view of
this result it would be possible to dispense with the notion of compactness,
At least for the purposes of this book, but this would be unwise, for it
Would mean shutting our eyes to the most striking property of bounded
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and closed sets of real or complex numbers. The outeome would be that
we would have fo repeat essentially the same proof in many different
connections.

There are several equivalent characterizations of compactness, and it
18 a matter of taste which one to choose as definition.  Whatever we do the
uninitiated reader will feel somewhat bewildered, for he will not be able to
discern the purpose of the definition. This is not surprising, for it took
a whole generation of mathematicians to agree on the best approach.
The consensus of present opinion is that it is best to focus the attention
on the different ways in which a given set can be covered by open sets.

Let us say that a collection of open sets is an open covering of a set X if
X is contained in the union of the open sets. A subeovering is a subcollec-
tion with the same property, and a finite covering is one that consists of &
finite number of sets. The definition of compactness reads:

Definition 6. A set X is compact if and only if every open covering of X
contains a finite subcovering.

In this context we are thinking of X as a subset of a metric space S,
and the covering is by open sets of 8. But if I/ is an open set in 8, then
UM X is an open subset of X (a relatively open set), and conversely
every open subset of X can be expressed in this form (Sec. 1.3, Ex. 1),
For this reason it makes no difference whether we formulate the definition
for a full space or for a subset.

The property in the definition is frequently referred to as the Heine-
Borel property. Its importance les in the fact that many proofs become
particularly simple when formulated in terms of open coverings.

We prove first that every compact space is complete. Suppose that

X is compact, and let {z,} be a Cauchy sequence in X. If y is not the |

limit of {x.} there exists an £ > 0 such that d(x.,y) > 2¢ for infinitely
many #n. Determine npsuch that d(z.,z.) < eform,n = np. We choose
afixed n Z nofor which d(z.,y) > 2e. Then d(®my) = d@.Y) — d(Tm,x.)
> ¢ for all m = no. It follows that the e-neighborhood N, (¥) contains
only finitely many x, (better: containg x, only for finitely many =),
Consider now the colleetion of all open sets [/ which contain only
finitely many x.. If {2.} is not convergent, it follows by the preceding
reasoning that this collection is an open covering of X. 'Therefore it
must contain a finite subcovering, formed by Uy, . . . , Uy. But thatis
clearly impossible, for since each U; containg only finitely many z, it
would follow that the given sequence is finite. )
Secondly, a compact set is necessarily bounded (a metric space is
bounded if all distances lie under  finite bound). To see this, choose a
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int zo and consider all neighborhoods N (z¢)t. Thisis an open covering,
and if X is compact it contains a finite subcovering; in other words,
X C Noy(xo) U+ - - U N, (x0) which means the same as’X C N ,(xo)
with p = max (py, . . . , pm). For any z, y € X it follows that d(x,y) =
dz,xe) + d(y,2e) < 2p, and we have proved that X is bounded.
But boundedness is not all we ean prove. It is convenient to define
a stronger property, called fofal boundedness:

Definition 7. 4 set X s lotally bounded #f, for every ¢ > 0, X can be
covered by findtely many e-neighborhoods.

This is certainly true of any compact set. For the collection of all
e-peighborhoods is an open covering, and the compactness imphlies that
we can select finitely many that cover X. We observe that a totally
bounded set is necessarily bounded, for if X C N(x) \J - + - U N.(tw)
then any two points of X have a distance <2e 4+ max d(zi,z;). (The
preceding proof that any compaet set is bounded becomes redundant; it
was included because of its elementary nature.)

We have now proved one part of the following theorem:

Theorem 6. A set is compact {f and only if i is complete and totailly
bounded.

To prove the other part, assume that the metric space S is eomplete
and totally bounded. Suppose that there exists an open covering which
does not contain any finite subcovering. Set ¢, = 2-7, We know that S
can be covered by finitely many er-neighborhoods. If each had a finite
subcovering the same would be true of S; hence there exists an N, (z,)
which does not admit a finite subcovering. Because N, (z;) is itself

subcovering.t Tt is clear how to continue the construction: we obtain a
sequence {x,} with the property that N, (z.) has no finite subcovering and
Tni1€ N, (x.). The second property means that d(z,,2,41) < &, and
hence d(,@nip) < & + gt F ¢ F Engp < 2L It follows that
{z.)isa Cauchy sequence. It converges to alimit y, and this y belongs to
One of the open sets U in the given covering. Because U is open it contains

.1 We are used to consider only small neighborhoods, but here we must include the
Peighborhoods with large p. From this point of view the name “p-spheroid’”’ would
¢ preferable.

Here we are using the fact that any subset of a totally bounded set is totally

bounded, The reader should prove this.

totally bounded we can find an x; € N, (1) such that N,,(zs) has no finite .
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an Ni(y). Choose n so large that d(z.y) < 8/2 and &, < §/2. Then
N, (z.) C Ni(y), for d(z,z.) < e implies d(z,) £ d(z,2.) + dlzay) < 8.
Therefore N, (x,) admits a finite subcovering, namely by theset U, This
is a contradiction, and we conclude that S has the Heine-Borel property.

Corollary. A subset of R or C is compact if and only if it is closed and
bounded.

We have already mentioned this particular consequence. In one
direction the conclusion is immediate: We know that a compact set is
bounded and complete; hut R and C are complete, and complete subzets
of a complete space are closed. For the opposite conclusion we need to
show that every bounded set in R or C is totally bounded. Let us take
the case of C. If X is bounded it is contained in a disk, and hence in a
square. The square can be subdivided into a finite number of squares
with arbitrarily small side, and the squares can in turn be covered by disks
with arbitrarily small radius. This proves that X is totally bounded,
except for a small point that should not be glossed over.  'When Definition
7 s applied to a subset X 8 it is slightly ambiguous, for it is not dear
whether the eneighborhoods should be with respect to X or with respect
to S; that is, it is pot elear whether we require their centers to lie on X,
It happens that thisis of no avail. 1In fact, suppose that we have covered
X by eneighborhoods whose centers do not necessarily lieon X. If such
a neighborhood does not meet X it is superfluous, and can be dropped. If
it does contain a point from X, then we can replace it by a 2e-neighborhood
around that peint, and we obtain a finite covering by 2e-neighborhoods
with centers on X. For this reason the ambiguity is only apparent, and
our proof that bounded subsets of C are totally bounded is valid.

There ig a third characterization of compact sets. It deals with the
notion of limi point (sometimes called cluster value): We say that y is a
limit point of the sequence [z, if there exists a subsequence {x,,} that
converges to . A limit point is almost the same as an accumulation point
of the set formed by the points x,, except that a sequence permits repeti-
tions of the same point. If y is a limit point, every neighborhood of ¥
contains infinttely many z.. The converse is also true. Indeed, suppose
that g — 0. If every N,(y) contains infinitely many z. we can choose
subseripts ny, by induction, in such a way that z,, € N (y) and 741 > 7.
It is clear that {z,} converges to ¢.

Theorem 7. A metric space is compact if and only if every infinide
sequence has a limit poind.

ANALYTIC FUNCTIONS AS MAPPINGS 63

This theorem is usually referred to as the Bolzano-Weierstrass theorem.
The original formulation was that every bounded sequence of complex
numbers has 8 convergent subsequence. It came to be recognized as an
important theorem precisely because of the role it plays in the theory of
analytic functions.

The first part of the proof is a repetition of an earlier argument. If
y is not a limit point of {z.} it has a neighborhood which contains only
finitely many x, (abbreviated version of the correct phrase). If there were
no limit points the open sets containing only finitely many z,, would form
an open covering. In the compact case we could select a finite subcover-
ing, and it would follow that the sequence is finite. The previous time we
used this reasoning was to prove that a compact space is complete. We
showed in essence that every sequence has a limit point, and then we
observed that a Cauchy sequence with & limit point is necessarily con-
vergent. For strict economy of thought it would thus have been better to
prove Theorem 7 before Theorem 6, but we preferred to emphasize the
importance of total boundedness as early as possible.

It remains to prove the converse. 1In the first place it is clear that the
Bolzano-Weierstrass property implies completeness. Indeed, we just
pointed out that a Cauchy sequence with a limit point must be convergent.
Suppose now that the space is not totally bounded. Then there exists an
e > 0 such that the space cannot be covered by finitely many e-neighbor-
hoods. We construct a sequence {z.,} asfollows: x, is arbitrary, and when
Ty, . . ., &» have been selected we choose 2,,.1 50 that it does not lie in
Ne(z) \J -+ + \U Ny(z,). This is always possible because these neigh-
borhoods do not cover the whole space. But it is clear that {z,} has no
convergent subsequence, for d(x.,z.) > ¢ for all m and n.  We conclude
that the Bolzano-Weierstrass property implies total boundedness. In
view of Theorem 6 that is what we had to prove.

The reader should reflect on the fact that we have exhibited three
Ch.ara,cterizations of compactness whose logical equivalence is not at all
trivial. Tt should be clear that results of this kind are particularly valua-
ble for the purpose of presenting proofs as concisely as possible.

EXERCISES

1. Give an alternate proof of the fact that every bounded sequence of
complex numbers has a convergent subsequence (for instance by use of the
limes inferior).

2. Bhow that the Heine-Borel property can also be expressed in the
f?ﬂowing manner: Every collection of closed sets with an empty intersec-
tion contains a finite subcollection with empty intersection.
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1, Use compactness to prove that a closed bounded set of real num-

bers has a maximum.
A EDEDE D is a decreasing seguence of nonempty

compact sets, then the intersection M E, is not empty (Cantor’s lemma).

1
Show by example that this need not be true if the sets are merely closed.
5. Let S be the set of all sequences T = {z.] of real numbers such
that only & finite number of thez,are 7 0. Defined(z,y) = max |z» — ¥ul-
Is the space complete? Show that the s-neighborhoods are not totally

bounded.

1.5. Continuous Functions. Wo shall consider functions f which are
defined on a metric space 8 and have values in another metric space S’
Yunctions are also referred to as mappings: we say that f maps S into s,
and we write f:8 - S". Naturally, we shall be mainly concerned with
real- or complex-valued functions; occasionally the latter are allowed
to take values in the extended complex plane, ordinary distance being
replaced by distance on the Riemann sphere.

The space S is the domain of the function. We are of course free to
consider functions f whose domain is only a subset of 5, in which case the
dormain is regarded as a subspace. In most cases it is safe to slur over the
distinction: a function on 8 and its restriction to a subset are usually
dencted by the same symbol. IfX C S the set of all values f(z) forz € S
is called the smage of X under §, and it is denoted by f(X). The énverse
image f-UX") of X" C & consists of all z € § such that f(z) € X’. Observe
that f(-(X") C X', and f1(J(X)) D X.

The definition of a continuous function needs practically no modifica
tion: f is continuous at a if to every & > 0 there exists 5 > 0 such that
d(z,a) < & implies &' (f(x),f(0)) <e We are mainly concerned with
functions that are continuous at all points in the domain of definition.
The following characterizations are immediate consequences of the
definition:

A function is continuous if and only if the inverse image of every open

sel 18 open.
A Junction is coninuous if and only if the inverse image of every closed

set is closed.

If f is not defined on all of S, the words “open” and “closed,” when
veferring to the inverse image, should of course be interpreted relatively
to the domain of f. Tt is very important to observe that these properties
hold only for the inverse image, not for the direct image. Tor instance
the mapping f(x) = 22/(1 + 2% of R into R has the image f(R) =
{; 0 £ y < 1} which is neither open nor closed. In this example f(R)
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fails to be closed because R i
s is not compact. In faet, the following is

Theorem 8. Under a continuo ;
is compact, and consequently closed. pyring the image of every compact set

Con;‘?;;;‘p;ssoii;e%t i 1;3 defined and continuous on the compact set X

o s formng ? f()_{) by open sets U, 'The inverse images f“‘(Ui

are open and m a:(,evermg of X . Because X is compact we can select a

e éez.'u.ig. XCfyugJ - - - \JFYU,). It follows that
1 + U U,, and we have proved that f(X) is compact.

‘ :4?! l?’}:‘ll y - li COM’&?EMG?I»S ¥ Bal—ﬂaz? ted pac
f T

The image-is a closed bo
) unded subset i
maximum and a minirmm follows by Ttlie(s)erinzfzﬁ‘ The existence of &

Theorem 9. Under o :
. . continuous mapping the i
s comnected. e tmage of any connected set

S, and that 1) is ll of 8. Suppese thar & - B whene £ i 5
’ nak all of 8. Suppose that & = AU B ‘
a . S " : ' where A
Sr:s e;)fil:; iz:,)x:}dotii‘hs]‘e.mjz. Then 8 = f~1YA4) U f~4B) isa representat?:r?g‘
B = 0 andlsglc:mt opzn sets. If S is connected either f~X(4) = 0 or
B ] 1331} = wary
conmected. ce 0 or B=0. We conclude that 8§ is
Whiclf izyplca,.} application is the assertion that a real-valued function
ot Ocon;ﬂ,nuous and- never zero on a connected set is either always
> int,ervjl a ‘;;Lyts negaﬁlve. In fact, the image is connected, and henﬁe
: 1. But an interval whi ; " e
bers also containg goro. which contains positive and negative num-
A mapping f:8 — & is saj
! : is said to be one to one if =

x =y it is sai : if f(x) = f(y) only fo
Fropggt;zsi: wd to be onto if f(S) = 5.1 A mapping with both g,;aes;
praperics his n foverse [ | defined on & it satisfosf 1(/(@) = 2 and
oy tha,t,fim . In t‘hls situation, if f and f-! are both continuous we
ot wehioh iIS }3; topological mapping ot a homeomorphism. A property ofa
For inst S‘S ared by all topological images is called a topological propert
topolo im;w’ we h'ave proved that compactness and connectedness af(-;

gical properties (Theorems 8 and 9). In this connection it is per-

These linguisti
and stm‘ :Cefit;eh(r;garnsilfally clumsy t‘erms.can be replaced by injective (for one to one)
onfo). A mapping with both properties is called bijective.
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haps useful to point out that the property of being an open subset is not
topological. If X C Sand ¥ C 8 andif X is homeomorphic to ¥ there is
no reason why X and Y should be simultaneously open. It happens to be
true if § = 8" = R~ (invariance of the region), but this is a deep theorem
that we shall not need.

The notion of uniform continutty will be in constant use. Quite
generally, a condition is said to hold uniformly with respect to & parameter
if it can be expressed by inequalities which do not involve the parameter.
Accordingly, a function f is said to be uniformly continuous on X if, to
every ¢ > 0, there exists a § > 0 such that d'(f(z1),f(z9)) < ¢ for all
pairs (z1,75) with d(z1,%2) < 8. The emphasis is on the fact that 5 is not
allowed to depend on .

Theorem 10. On o compact set every continuous function is uniformiy
coniinuous.

The proof is typical of the way the Heine-Borel property ean be used.
Suppose that f is continuous on a compact set X. Every ye X has a
neighborhood N,(y) such that &'(f(z),f(y)) < ¢/2 for « € N, (y); here p
may depend ony. Consider the open covering of X by the smaller neigh-
borhoods N,/:(y). We can find a finite subcovering: X CC N, 2(y1) U
© 0 o U N, 2(ym). Let 5 be the smallest of the numbers pi/2, . . .,
pn/2. Consider a pair (z1,7s) with d(zyzs) < 5. There exists a 1
with d{z,yx) < /2, and we obtain d(ra,yr) < pu/2 + & £ pr.  Hence
d'(f@hf)) < ¢/2 and d'(f(z2), f(ye)) < &/2 so that &' (f(z1),fze) < ¢
as desired.

On sets which are not compact some continuous functions are uni-
formly continuous and others are not. For instance, the function z is
uniformly continuous on the whole complex plane, but the function z*
is not.

EXERCISES

1. Construet a topological mapping of the open disk |2| < 1 onto the
whole plane.

2. Prove that a subset of the real line which is topologically equiva-
lent to an open interval is an open interval. (Consider the effect of
removing a point.)

3. Prove that every continuous one-to-one mapping of & compact
space is topological. (Show that closed sets are mapped on closed sets.)

4, Let X and Y be closed sets in a complete metric space, at least one
of them compact. Prove that there exist x ¢ X, y € ¥ such that d(z,y)
is & minimum.
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5. Which of the following functions are uniformly continuous on the
whole real line: sin x, = sin z, z sin (2?), |z|? sin 2?

1.6. Topological Spaces. 1t is not necessary, and not always con-
venient, to express nearness in terms of distance. The observant reader
will have noticed that most results in the preceding sections were formu-
lated in terms of open sets. True enough, we used distances to define
open sets, but there is really no strong reason to do this. If we decide to
consider the open sets as the primary objects we must postulate axioms
that they have to satisfy. The following axioms lead to the commonly
accepted definition of a fopological space:

Definition 8. A topological space is a set T together with a collection of dts
subsets, called open sets. The following conditions have to be Sulfilled:

(i) The empty set O and the whole space T are open sels.

(i) The intersection of any two open sels is an open set,

(ii) The union of an arbitrary collection of open sets is an open sef.

We recognize at once that this terminology is consistent with our
earlier definition of an open subset of a metric space. Indeed, properties
(it} and (iii) were strongly emphasized, and (i} is trivial,

Closed sets are the complements of open sets, and it is immediately
clear how to define interior, closure, boundary, and so on. Neighbor-
hoods could be avoided, but they are rather convenient: N isa neighbor-
hood of x if there exists an open set U such that z ¢ I/ and [7 CN.

Connectedness was defined purely by means of open sets. Hence the
definition carries over to topological spaces, and the theorems remain
true. The Heine-Borel property is also one that deals only with open
sets. Therefore it makes perfect sense to speak of a compact topological
space. However, Theorem 6 becomes meaningless, and Theorem 7
becomes false.

As a matter of fact, the first serious difficulty we encounter is with
convergent sequences. 'The definition is clear: we say that z, — 2 if
eévery neighborhood of x contains all but a finite number of the z,. But
if 2, — x and z, — y we are not able to prove that x == %, This awkward
situation is remedied by introducing a new axiom which characterizes the
topological space as a Hausdorff space:

Definition 9. A topological space is called a H ausdorff space if any two
distinct points are condained in digjoint open sels.

In other words, if x # y we require the existence of open sets U, V
suchthatze U, ye Vand UMV = 0. Inthe presence of this condition
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it is obvious that the limit of a convergent sequence is unique. We shall
never in this book have occasion to consider a space that is not a Hausdorf
space.

This is not the place to give examples of topologies that cannot be
derived from a distance function. Such examples would necessarily be
very complicated and would not further the purpoeses of this book. The
point is that it may be unnatural to introduce a distance in situations

when one is not really needed. The reason for including this section has®

been to alert the reader that distances are dispensable.

2. CONFORMALITY

We now return to our original setting where all functions and variables are
restricted to real or complex numbers. The role of metric spaces will
seem disproportionately small: all we actually need are some simple
applications of connectedness and compactness.

The whole section is mainly descriptive. It centers on the geometric
consequences of the existence of a derivative.

2.1. Ares and Closed Curves. The equation of an arc v in the plane
is most conveniently given in parametric form z = z(8), ¥ = y{(f) where ¢
runs through an interval & < ¢ £ 8 and «(2), y(f) are continuous func-
tions. We can also use the complex notation z = z(t) = z() + #y(l)
which has several advantages.

Considered as a point set an arc is thus the image of a closed finite
interval under a continuous mapping. As such it is compact and con-
nected. However, an arc is not merely a set of points, but very essen-
tially also a succession of points, ordered by increasing values of the
parameter. If a nondecreasing function { = ¢(r) maps an interval
& 75 B ontoa =15 B, then z = 2(¢(r)) defines the same succession
of points as 2 = 2(f). We say that the first equation arises from the sec-
ond by a change of parameter. The change is reversible if and only if ¢(r)
18 strictly increasing. For instance, the equationz = 2 + #3 0 <t = 1
arises by a reversible change of parameter from the equation z = { 4 42,
0=2t=1 A change of the parametric interval (a,8) can always be
brought about by a linear change of parameter, which is one of the form
t=gr 4 ba>0

Logically, the simplest course is to consider two arcs as different as
soon as they are given by different equations, regardiess of whether one
equation may arise from the other by & change of parameter. In follow-
ing this course, as we will, it is important to show that certain properties of
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arcs are invariant under a change of parameter. For instance, the ¢nitial
and ferminal point of an arc remain the same after a change of parameter.

If the derivative 2/(f) = 2'(f) + @' (f) exists and is 50, the arc 4 has
a tangent whose direction is determined by arg 2/(f). We shall say that
the arc is differentiable if 2'(t) exists and is continuous (the term con-
tinuously differentiable is too unwieldy); if, in addition, 2'(f) # 0 the arc
is said to be regular.  An arc is piecewise differentiable or piecewise reguiar
if the same conditions hold except for a finite number of values ¢; at these
points z(2) shall still be continuous with Ieft and right derivatives which
are equal to the left and right limits of 2’(#) and, in the case of a piecewise
regular arc, 0,

The differentiable or regular character of an arc is invariant under the
change of parameter { = ¢(r) provided that ¢'(7) is continuous and, for
regularity, #0. When this is the case, we speak of a differentiable or
regular change of parameter.

An arc is simple, or a Jordan arc, if 2(t1) = z{t;) only fort; = t,. An
arc is a closed curve if the end points coincide: z(a) = 2(8). For closed
curves a shift of the parameter is defined as follows: If the original equa-
tionisz = 2(f), « £t £ B, we choose a point t, from the interval (,8) and
define a new closed curve whose equation is z = 2(f) for f{p < t < 8 and
=zl — Bt a)forpsi<ir+ 48— o The purpose of the shift is to
get rid of the distinguished position of the initial point. The correct
definitions of a differentiable or regular closed curve and of a sémple closed
curve {(or Jordan curve) are obvious.

The opposite arc of z = #(l), « £ t < f, is the arcz = z(—1), —8 £
t £ —a. Opposite arcs are sometimes denoted by v and —+, sometimes
by v and ¥, depending on the connection. A constant function #(f)
defines a poinl curve.

A cirele C, originally defined as a locus }z — a] = #, can be considered
as a closed curve with the equation z = a + re®t, 0 £ ¢t £ 2=. We will
use this standard parametrization whenever a finite circle is introduced.
This convention saves us from writing down the equation each time it is
needed; also, and this is its most important purpose, it serves as a definite
rule to distinguish between € and —C.

2.2, Analytic Functionsin Regions, When we consider the derivative

) =l FE B = 1)
7/@) = lim LEX 2 208

of & complex-valued function, defined on a set 4 in the complex plane, it is
of course understood that z € A and that the limit is with respect to values
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hsuchthatz 4+ e A. The existence of the derivative will therefore have
different meaning depending on whether zis an interior point or a bound-
ary point of A. 'The only simple way to avoid this is to insist that all
analytic functions be defined on open sets. We shall find that further
advantages ensue if every analytic function is defined in a region.

We give a formal statement of the definition:

Definition 10. A complex-valued function f(z) is said to be analytic in
the region Q if it is defined and has a derivative of each point of Q.

According to this definition an analytic function in Q is always single-
valued. It is very important that the definition is localized to a fixed
region ©, and it is not permissible fo speak of an analytic function with-
out specifying the region in which it is considered. Sometimes the region
is clearly implied by the context, and in such cases the explicit reference
may be omitted.

For greater flexibility of the Ianguage it is desirable to introduce the
following complement to Definition 11:

Definition 11. A function f(z} s analytic on an arbitrary point set A
if it s analytic in some region which conlains A.

It is clear that the last definition is merely an agreement fo use & con-
venient terminology. This is a case in which the region € need not be
explicitly mentioned, for it will be found that the specific choice of © is
immaterial as long as it contains A. A typical application is the use of
the phrase: “Let f(2) be analytic at 2,.”” It means that & function f(z)
is defined and has a derivative in some neighborhood of z; which need
not be specified.

Although our definition requires all analytic functions to be single-
valued, it is possible fo consider such multiple-valued functions as 4/z,
log z, or arc cos 2z, provided that they are restricted to a definite region
in which it is possible to select a single-valued and analytic branch of the
function.

For instance, we may choose for @ the complement of the negative
real axis z £ 0; this set is indeed open and connected. In £ one and
only one of the values of 4/z has & positive real part. With this choice
w = /z becomes a single-valued function in @; let us prove that it is
continuous. Choose two points z;, z: € @ and denote the corresponding
values of w by wy = u; + @, wy = us + vy with uy, ue > 0. Then

ler = 2] = |w} — w}] = fwy — wa] - Jwy + wy

L]
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and |ws - wa| 2 us + us > us. Hence

[22 — 25

lwy — we| < ”

and it follows that w = 4/Z is continuous at z;. Once the continuity is
established the analyticity follows by derivation of the inverse function
z = w® Indeed, with the notations used in caleulus Az—s 0 implies
Aw — 0. Therefore,

lim 8% o fim A%
a0 D2 aw—p A2
and we obtain

dw 1 _ 1 1
dzmufif—2wm2\/;
dw

with the same branch of 4/%.

In the case of log z we can use the same region 2, obtained by exclud-
ing the negative real axis, and define the principal branch of the logarithm
by the condition |Im log 2] < x. Again, the continuity must be proved,
but this time we have no algebraic identity at our disposal, and we are
forced to use a more general reasoning. Denote the principal branch by
W= u+ @ =1logz Fora given point wy = u; + &y, |vs] < =, and a
given ¢ > 0, consider the set 4 in the w-plane which is defined by the
inequalities |w — wy| 2 ¢, o] = =, Ju — ui1] < log 2. 'This set is closed
and bounded, and for sufficiently small ¢ it is not empty. The continu-
ous function l¢* — ¢*!| has consequently & minimum p on A (Theorem 8,
Corollary). This minimum is positive, for A does not contain any point
W1+ n -+ 2ri. Choose § = min (p,3¢*), and assume that

2y = 23] = Jems — | < 8.

Then w; cannot lie in A, for this would make jer — e»| = p 2 &
Neither is it possible that u, < uy — log 2 or us > w1 + log 2; in the
former case we would obtain le — ¢ 2= 1 — ou > jex 2 8, and in
the latter case |em — evs| = ¢ — ¢4 > ¢w > 5, Hence w, must lie
m the disk |w — w;| < ¢, and we have proved that w is a continuous
function of 2. From the continuity we coneclude as above that the
derivative exists and equals 1/2.

 The infinitely many values of arc cos z are the same as the values of
tlog (z + +/2f = 1). In this case we restrict z to the complement § of
the half-lines £ 0,y = Oandx = 1,y = 0. Since 1 — 22 is never real
and <0 in &, we can define v/1 — 2% as in the first example and then set

V&t —1=1v1=7%, Moreover, z+ 12" — 1 cannot be negative
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or zero in §'; indeed, since z + /22 — 1 and z — /2% — [ are reciprocal.
z+ 42 —1 <0 would imply z — /22 — 1 < 0 and hence, 2z < 0,
We can thus define an analytic branch of log (z 4+ /2% — 1) whose
imaginary part lies between —= and 7. In this way we obtain a single-
valued analytic function

arccosz = ¢ log (z + V22 — 1)

in £ whose derivative is

Darccosz =1

1 (1+ 2 )__ﬂ 1
24 /22 1 AV -1 V1 =2

where 4/1 — 2? has a positive real part.

There is nothing unigque about the way in which the region and the
single-valued branches have been chosen in these examples. Therefore,
each time we consider a function such as log z the choice of the branch
has to be specified. It is a fundamental fact that it is ¢mpoessible to
define a single-valued and analytic branch of log 2z in certain regions.
This will be proved in the chapter on integration.

All the results of Chap. I1, Sec. 1.2 remain valid for funetions which
are analytic in a region. In particular, the real and imaginary parts of an
analytic function in © satisfy the Cauchy-Riemann equations

du v du av

éx &y oy B
Conversely, if u and v satisfy these equations in €, and if the partial
derivatives are continuous, then u -+ @ is an analytic function in Q.
An analytic function in 2 degenerates if it reduces to a constant. In
the following theorem we shall list some simple conditions which have this
consequence:

Theorem 11. An analytic function in a region @ whose derivative van-
ishes identically must reduce to a constant, ~ The same is true if either the
real part, the imaginary part, the modulus, or the argument is constant.

The vanishing of the derivative implies that du/dz, du/dy, av/éx,
/3y are all zero. It follows that « and » are constant on any line seg-
ment in § which is parallel to one of the coordinate axes. In Sec, 1.3 we
remarked, in connection with Theorem 3, that any Lwo poinis in a region
can be joined within the region by a polygon whose sides are parallel to
the axes. We conclude that u 4 4 is constant.
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If u or v is constant,

oy = g
f(z)-—ax ) -+ i

dy oy 3 = O

and hence f{z) must be constant. If 4® - #* is constant, we obtain
du ov
and
du v o du _
u~5§+v~5§w— u%+v$w—(}.

These equations permit the conclusion du/8x = dv/0x = 0 unless the
determinant u? -+ v vanishes, But if u® 4 »? = 0 at a single point it is
constantly zero and f(z) vanishes identically. Hence f(z) 18 in any case
a constant.

Finally, if arg f(z) is constant, we can set u = kv with constant k
(unless v is identically zero). But w — kv is the real part of (1 + &),
and we conclude again that f must reduce to a constant.

EXERCISES

1. Give a precise definition of a single-valued branch of v/1 + z +
4/1 — z in a suitable region, and prove that it is analytic,

2, Same problem for log log z.

3. Suppose that f{(z) = u + ¢ is analytic in a region £ and that
Fuw) = 0 where F'is a real-valued funetion with continuous first deriva-
tives. Under what condition can one conclude that f(z) is constant?

4. Suppose that f(z} is analytic and satisfies the condition |f(2)? — 1|
< linaregion f. Show that either Re f(z) > 0 or Re f(z) < 0 through-
out .

2.3. Conformal Mapping. Suppose that an are v with the equation
z=2(), «a £1 5 8, is contained in a region Q, and let f(2) be defined
and continuous in €. Then the equation w = w(@) = f{z()) defines an
arc ' in the w-plane which may be called the image of v.

Consider the case of an f(z) which is analytic in €. If 2'(f) exists,
we find that w'(f) also exists and is determined by

(1) w'{t) = f )2 1),

We will investigate the meaning of this equation at a point 2y = #(to}
with z’(te) # 0 and f’(in) # 0,
The first conclusion is that w'(fs} # 0. Hence ¥’ has a tangent at
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= f(zo), and its direction is determined by
@ arg w'(lo) = arg (20} -+ arg 2'(1o).

This relation asserts that the angle between the directed tangents to v
at zo and to v' at we is equal to arg f'(z). It is hence independent of
the curve . IFor this reason curves through z, which are tangent to
each other are mapped onto curves with a common tangent at w,.
Moreover, two curves which form an angle at 2, are mapped upon curves
forming the same angle, in sense as well as in size. In view of this
property the mapping by w = f(z) is said to be conformal at all points
with f/{z) # 0,

A related property of the mapping is derived by consideration of the
modulus |f'(z0)). We have

@) = f)l _
Jim PR = {f'(20)l,
and this means that any small line segment with one end point at 2, is,
in the limit, contracted or expanded in the ratio |f'(z0)]. In other words,
the linear change of scale at z, effected by the transformation w = f(z2),
is independent of the direction. In general this change of scale will vary
from point to point.

Conversely, it is clear that both kinds of conformality together imply
the existence of f'(z¢). It is less obvious that each kind will separately
imply the same result, at least under additional regularity assumptions.

To be more precise, let us assume that the partial derivatives 8f/dx
and df/8y are continuous. Under this condition the derivative of
w(f) = f{z(t)) can be expressed in the form

w' () = % a'(to) + ”a% y' (to)

where the partial derivatives are taken at z,, In terms of 2'(fy) this can
be rewritten as

ww =3 (Z- i M)ew + (L +id) 7w

If angles are preserved, arg [w'(f0)/2'(t)] must be independent of ’

arg 2'(ty). The expression
o _ . of P AYAD)
@ 3 ( ay) +t3 (ax +i ) ()

must therefore have a constant argument. As arg 2/'(to) is allowed to
vary, the point represented by (3) describes a circle having the radiug
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$(af/dx) + i(8f/3y)|. 'The argument cannot be constant on this circle
unless its radius vanishes, and hence we must have

ar m‘ﬁ_f
4) e Zay

which is the complex form of the Cauchy-Riemann equations.

Quite similarly, the condition that the change of scale shall be the
game in all directions imphes that the expression (3) has a constant
modulus. On a circle the modulus is constant only if the rading van-
ishes or if the center lies at the origin. In the first case we obtain (4),
and in the second case

The last equation expresses the fact that f{2) is analytic. A mapping
by the conjugate of an analytic function with a nonvanishing derivative
is said to be indireclly conformal. Tt evidently preserves the size but
reverses the sense of angles.

If the mapping of € by w = f(z) is topological, then the inverse func-
tion z = f~%(w) is also analytic. This follows easily if f'(2) 0, for then
the derivative of the inverse function must be equal to 1/f'(z) at the point

= f~w). We shall prove later that f'(2) can never vanish in the case
of & topological mapping by an analytic funetion.

The knowledge that ["(z) s 0 is sufficient to conclude that the map-
ping is topological If it is restricted to a sufficiently small neighborhood of
zo. This follows by the theorem on implicit functions known from the cal-
culus, for the Jacobian of the functions v = u{x,y), v = v(x,y) at the point
2018 | f(20)|? and hence # 0. Later we shall present a simpler proof of this
important theorem.

But even if f'(z) # 0 throughout the region {, we cannot assert that
the mapping of the whole region is necessarily topological. To illustrate
what may happen we refer to Fig. 4. Here the mappings of the sub-

Fi1G. & Doubly covered region,
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regions £, and 0 are one to one, but the images overlap. It is helpful to
think of the image of the whole region as a transparent film which partly
covers itself. This is the simple and fruitful idea used by Riemann when
he introduced the generalized regions now known as Riemann surfaces.

3. LINEAR TRANSFORMATIONS

Of all analytic functions the first~order rational funetions have the simplest
mapping properties, for they define mappings of the extended plane onto
itself which are at the same time conformal and topological. The linear
transformations have also very remarkable geometric properties, and for
that reason their importance goes far beyond serving as simple examples of
conformal mappings. The reader will do well to pay particular attention
to this geometric aspect, for it will equip him with simple but very valua-
ble techniques.

3.1. The Linear Group. We have already remarked in Chap. 2, Sec.
1.4 that a lneor fractional fransformation

x _ _az+b
(‘)) w—S(z)WCZ—i-'d
with ad — be 52 0 has an inverse
e dw — b
2= 8 = T

The special values S(«) = a/c and 8(—d/e) = « ean be introduced
either by convention or ag limits for z— = and z--» —d/e. With the
latter interpretation it becomes obvious that S is a topological mapping of
the extended plane onto itself, the topology being defined by distances on
the Riemann sphere.
For linear transformations we shall usually replace the notation S(z)
by Sz. The representation (5) is said to be normalized if ad — be = 1.
It s clear that every linear transformation has two normalized represen-
tations, obtained from each other by changing the signs of the coefficients,
A convenient way to express a linear transformation is by use of
homogeneous coordinates. If we write z = z;/2;, w = w1/ws we find that
w= 8z if
- w = az1 -+ sz
(b) Wy = € + dzg

@)= D)

The main advantage of this notation is that it leads to a simple determina-

or, in matrix notation,
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tion of & composite transformation w = 8uSyz.  If we use subscripts to
distinguish between the matrices that correspond to S,, S; it is immediate

 that S1S; belongs to the matrix product

a b (az 62) _ ((31112 + bicz abe + bzdz).
(01 dl) ety h eiy + dits  Cibe + dids

All linear transformations form a group. Indeed, the associative
law (S:182)8s = 8:1(8:Ss) holds for arbitrary transformations, the identity
w == zisa linear transformation, and the inverse of a linear transformation
is linear. The ratios z;:2: 5 0:0 are the points of the complex projective
line, and (6) identifies the group of linear transformations with the one-
dimensional projective group over the complex numbers, usually denoted
by P(1,C). 1f we use only normalized representations, we can also iden-
tify it with the group of two-by-two matrices with determinant 1 {(denoted
SL(2,C)), except that there are two opposite matrices corresponding to the
same Hnear transformation.

We shall make no further use of the matrix notation, except for
rernarking that the simplest linear transformations belong to matrices of

the form
1 &\ (& 0\ /0 1\
0 1/\0 1/\1 0

The first of these, w = 2z + a, is called a parallel translation. The second,

w = ke, 18 a rotation if |k| = 1 and a homothetic transformation if k > 0.

For arbitrary complex k 3 0 we can set k = || - k/]k|, and hence w = kz

can be represented ag the result of a homothetic transformation followed

by a rotation. The third transformation, w = 1/z, is called an nversion,
If ¢ # 0 we can write

az+b _ be—ad 4+ ¢
czc+d ez+diey " ¢

and this decomposition shows that the most general linear transforma-
ion is composed by a translation, an inversion, a rotation, and a homo-
thetie transformation followed by another translation., If ¢ = 0, the
inversion falls out and the last translation is not needed.

EXERCISES
1. Prove that the reflection z — Z is not a linear transformation.

2. If

_z+2 oz
lewm, ?2z—z+:€

find TsTyz, ToTz and T7' Tz,

]
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3. Prove that the most general transformation which leaves the origin
fixed and preserves all distances is either & rotation or a rotation followed
by reflexion in the real axis.

4, Show that any linear transformation which transforms the real
axis into itself can be writben with real coefficients,

3.2. The Cross Ratio. (iven three distinct points z., z, z; In the
extended plane, there exists a linear transformation 8§ which carries them
into 1, 0, « in this order. If none of the pointsis =, 8 will be given by

g~ 23 23~ B3
(M) Sg = "1,

Z o 24 Bz — &4
If 29,25 Or 24 = o the transformation reduces to

2 e 2y Zg - T4 Z  Z3
¥
Z -2y P 2y — Z3

respectively.

If T were another lnear transformation with the same property,
then 871 would leave 1, 0, « invariant. Direct calculation shows that
this is trve only for the identity transformation, and we would have
S =T. We conclude that 8 is uniquely determined.

Definition 12, The cross ratio (zy22,%3,74) 18 the tmage of 5 under the
linear transformation which carries 2a,z5,2s tnlo 1, 0, .

The definition is meaningful only if 2,25,24 are distinet. A conven-
tional value ean be introduced as soon as any three of the points are
distinet, but this is unimportant,

The cross ratio is invariant under linear transformations. In more
precige formulation:

Theorem 12, If #, 25, 23, 24 are distinel poinis tn the extended plane and T
any linear transformation, then (Tz1, T2, 125, T2s) = (21,29,25,24).

The proof is immediate, for if Sz = (z,25,25,24), then ST carries
Tzs, Tzs, Tzyinto 1,0, . By definition we have hence
(T21,T22,T23,T24) = STHT2:) = Sz1 = (21,23,23,24).

With the help of this property we can immediately write down the
linear transformation which earries three given points zy, 2s, 23 to pre-

ANALYYIC FUNCTIONS AS MAPPINGS %

gcribed positions wy, we, ws.  The correspondence must indeed be given by
®) (w,n,we,ws) = (2,21,22,23).

In general it is of course necessary to solve this equation with respect to w.

Theorem 13. The cross ratio (z,25,23,24) is real if and only if the four
points lie on a circle or on a straight line.

This is evident by elementary geometry, for we obtain

arg (21,22,25,20) = argH — arg H,
and if the points lie on & circle this difference of angles is either 0 or 4,
depending on the relative location.

For an analytic proof we need only show that the image of the real
axis under any linear transformation is either a circle or a straight line.
Indeed, Tz = (2,20,25,24) is 1eal on the image of the real axis under the
transformation 771 and nowhere else.

The values of w = 7z for real z satisfy the equation Tw = Tw.
Explicitly, this condition is of the form

o

13

aw+b @&
7

-+
ew+d g+

2

By cross multiplication we obtain
(aé — ca)lw?| + (ad — cb)w + (b6 — da)w + bd — db = 0.

If ¢ — ¢@ = 0 this is the equation of a straight line, for under this con-
dition the coefficient ad — ¢b cannot also vanish. If @& — cd 7 0 we can
divide by this coefficient and complete the square. After a simple com-
putation we obiain

dc — €a

ad -~ &b ad — be
l'w—i- ldt:mca

which is the equation of = circle.

The last result makes it clear that we should not, in the theory of
lingar transformations, distinguish between circles and straight lines. A
further justification was found in the fact that both correspond to circles
on the Riemann sphere. Accordingly we shall agree to use the word
circle in this wider sense.}

t This agreement will be in force only when dealing with linesr transformations.
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The following is an immediate corollary of Theorems 12 and 13:-

Theorem 14. A linear 'tmnsfwmation carries circles into circles.

EXERCISES

1. Find the linear transformation which carries 0,4, —¢into 1, —1, 0.

2, Express the cross ratios ecorresponding to the 24 permutations of
four points in terms of A = (21,25,25,24).

3. If the consecutive vertices zi, 2s, 25, 24 of & quadrilateral lie on a
circle, prove that

L2y — 23} + 12s — 2a] = lo1 — 22|+ Jou — 2a] + |22 — 23l - |1 — 24

and interpret the result geometrically.

4. Show that any four distinct poinis can be carried by a linear
transformation to positions 1, —1, &k, —k, where the value of &k depends on
the points. How many solutions are there, and how are they related?

3.3. Symmetry. The points z and Z are symmetric with respect to the
real axis. A linear transformation with real coefficients carries the real
axis into itself and z, Z into points which are again symmetric. More
generally, if a linear transformation 7' carries the real axis into a circle C,
we shall say that the points w = Tz and w* = TZ are symmelric with
respect to C. This is a relation between w, w* and C which does not
depend on T. For if § is another transformation whieh carries the real
axis into C, then 8§77 is a real transformation, and hence S~w = S~
and S-w* = §-1T% are also eonjugate. Symmetry can thus be defined
in the following terms:

Definition 13. The points z and z* are said fo be symmetric with respect
to the cirele C through 2y, 2s, 24 if and only if (2% 21,25,25) = (2,21,29,24).

The points on C, and only those, are symmetric to themselves, The
mapping which carries z into z* is 8 one-to-one correspondence and is
called reflection with respect to €. Two reflections will evidently result
in a linear transformation.

We wish to investigate the geometric significance of symmetry. Sup-
pose first that (' is a straight line. Then we can choose z; = « and the
condition for symmetry becomes

*

fx
W

¥ — 2a A
9 =
©) 2y~ 8y EH

Ll
LX)

ANALYTIC FUNCTIONS AS MAPFPFINGS 81

Taking absolute values we obtain le* — 25| = [z — 2,]. Here 2, can be
any finite point on. €, and we conclude that z and 2* are equidistant
from all points on €. By (9) we have further

2¥ — 2y

Im = == [ ———5,
23— 2g 2 ™ Zg

and hence z and z* are in different half planes determined by ¢+ We
Ieave to the reader to prove that C is the bisecting normal of the segment
between z and z¥%,

Consider now the case of & finite circle € of center a and radius R.
Systematic use of the invariance of the cross ratio allows us to conclude
as follows:

{z,21,20,23) = (z — a,21 — Q22 — @23 — @)

(_ R R R? R -
=(z~aq ) - ( g T T G T 0 _a)
&=

21— #a— 0 25— G
R2
=z (% ~a 4 a,21,2¢,23

This equation shows that the symmetric pointof zis 2* = B2/ — @) + ¢
or that z and 2* satisfy the relation

(19) (z* — o} — d) = R

The product [z* — a| - |2 — al of the distances to the center is hence R2.
Further, the ratio (z* — a)/(z — a) is positive, which means that z and
#* are situated on the same half line from ¢. There is a simple geometric
construction for the symmetric point of z (Fig. 5). We note that the
symmetric point of g is .

T Unles they coincide and lie on C.

FiG. 5. Reflection in a circle.
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Theorem 15. (The symmetry principle.) If a linear transformation |
carries a cirele Cy into o circle C'y, then it transforms any pair of symmetric |
points with respect to Cy into a pair of symmetric points with respect to C,, |

Briefly, linear transformations preserve symometry. If Cyor Csis the
real axis, the principle follows from the definition of symmetry. In the §
generall case the assertion follows by use of an intermediate transformation |

which earries €, into the real axis,

There are two ways in which the principle of symnetry can be used, 4
If the images of z and C under a certain linear transformation are known, §
then the principle allows us to find the image of 2%, On the other hand,
if the images of z and 2* are known, we conclude that the image of ¢
must be a line of symmetry of these images. While this is not enough
to determine the image of €, the information we gain is nevertheless §

valuable.

The principle of symmetry is put to practical use in the problem of §
finding the linear transformations which carry o circle C into a circle C7. §
We can always determine the transformation by requiring that three
points zy, 2, z; on € go over into three points wn, we, ws on C’; the trans- §
formation is then (w,w,w,w;) = (z,21,20,25). But the transformation is 3
also determined if we prescribe that a point 2; on € shall correspond to |
& point w, on ¢’ and that a point 2, nof on € shall be carried into & pe’nt; |

wy not on C'. We know then that 2§ (the symmetric point of z, with
respect to C) must correspond to w§ (the symmetric point of w, with
respect fo ). Hence the transformation will be obtained from the
relation (wwi,we,wf) = (2,21,20,2%).

EXERCISES

1. Prove that every reflection carries circles into circles.

2. Reflect the imaginary axis, the line z = ¥, and the eircle |2] = 1
in the circle |z — 2| = 1,

3. Carry out the reflections in the preceding exercise by geometric
construction,

4. Find the linear transformation which carries the circle |2} = 2 into
lz 4+ 1} = 1, the point —2 into the origin, and the origin into 1.

5. Find the most genera! linear transformation of the circle ledd = B
into itself,

6. A linear transformation carries a pair of concentric circles into
another pair of concentric circles. Prove that the ratios of the radii must
be the same,
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7. Find a linear transformation which carries |2} = land |2 —4 = }
into concentric circles. What is the ratio of the radii?
8. Same problem for {2| = 1l and z = 2.

3.4. Oriented Circles. Because §(2) is analytic and

ad - be
(cz + d)?

the mapping w = S(z) is conformal for z # —d/cand ©. It follows that
o pair of intersecting circles are mapped on circles that include the same
angle. In addition, the sense of an angle is preserved. From an intui-
tive point of view this means that right and left are preserved, but a more
precise formulation is desirable. _

An orientation of a circle C is determined by an ordered triple of
points 25,25,2: on C. ~With respect to this orientation a point 2z noton €
is said to lie to the right of C if Tm (2,21,25,25) > 0 and to the left of C is
Im (2,21,22,23) < O (this checks with everyday use because (,1,0, ) = 7).
It is essential to show that there are only two different orientations. By
this we mean that the distinction between left and right is the same for all
triples, while the meaning may bereversed. Since the cross ratio is invari-
ant, it is sufficient to consider the case where C is the real axis. Then

(2,21,22,23) = g + b
cz - d

8'(2) = 0

can be written with real coefficients, and a simple calculation gives

ad — be
Im (Z,Zl,z2,23) = W IH} 2.

We recognize that the distinction between right and left is the same as
the distinction between the upper and lower half plane. Which is which
depends on the sign of the determinant ad — be.

A linear transformation § carries the oriented circle ¢ into a circle
which we orient through the triple Sz,, Szs, Sz;. From the invariance of
the cross ratio it follows that the left and right of € will be mapped on the
left and right of the image circle.

If two circles are tangent to each other, their orientations can be
compared. Indeed, we can use alinear transformation which throws their
common point to . The circles become parallel straight lines, and we
know how to compare the directions of parallel lines. _

In the geometric representation the orientation zy, 2, 23 can be indi-
cated by an arrow which points from z; over z2 to z;. With the usual
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choice of the coordinate system left and right will have their customar
meaning with respect to this arrow.

When the finite plane is considered as part of the extended plane, the
point at infinity is distinguished. We can therefore define an absolute
positive orientation of all finite circles by the requirement that « should
lie to the right of the oriented circles. The points to the left are said to
form the inside of the circle and the points to the right form its outside.

EXERCISES

1. If 21, 22, 23, 24 &re points on & eircle, show that zy, 23, 24 and 29, 23, 24
determine the same orientation if and only if (21,25,25,2) > 0.

2, Prove that a tangent to a circle is perpendicular to the radius
through the point of contact (in this connection a tangent should be defined
as & straight line with only one point in common with the circle),

3. Verily that the inside of the circle |z — a| = R is formed by all
points z with |¢ — a] < R.

4. The angle between two oriented circles at a point of intersection is
defined as the angle between the tangents at that point, equipped with the
same orientation. Prove by analytic reasoning, rather than geometric
inspection, that the angles at the two points of intersection are opposite
to each other.

3.5. Families of Circles. A great deal can be done toward the visual-
ization of linear transformations by the introduction of certain families
of circles which may be thought of as coordinate lines in a circular
coordinate system.

Consider a linear transformation of the form

Here z = a corresponds to w = O and z = bto w = co. It follows that
the straight lines through the origin of the w-plane are images of the
circles through @ and b.  On the other hand, the concentric circles about
the origin, |w| = p, correspond to circles with the equation

z—a
z—b

= p/lk.

These are the circles of Apollonius with limit points ¢ and b. By their

equation they are the loci of points whose distances from @ and b have
8 constant ratio.

Denote by €, the circles through a, b and by C, the circles of Apol-
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#1G. 6. Steiner circles,

loniug with these limit points. The configuration (Fig. 6) formed by all
the circles € and C: will be referred to as the circular nef or the Steiner
circles determined by a and b. It has many interesting properties of
which we shall list & few:

1. There is exactly one C, and one C; through each point in the plane
with the exception of the limit points.

2. Every € meets every 'y under right angles.

3. Reflection in a C; transforms every C; into itself and every (; into
another (;. Reflection in a C; transforms every €, into itself and every
C; into another (..

4. The limit points are symmetric with respect to each Cy, but not
with respect to any other circle.

These properties are all trivial when the limit points are 0 and o,
t.e., when the C, are lines through the origin and the C; concentric
circles. Since the properties are invariant under linear transformations,
they must continue to hold in the general case.

If a transformation w = Tz carries @, b into ¢, b’ it can be written in
the form

w—a E—a
(1) ,wmb’—k z—b
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It is clear that 7 transforms the circles €y and C; into circles €} and
C; with the limit points o, V.

The situation is particularly simple if ¢’ = a, b = b. 'Thena, b are
said to be fived points of T, and it is convenient to represent z and Tz in
the same plane. Under these circumstances the whole cireular net will
be mapped upon itself. The value of & serves to identify the image
cireles C§ and €. Indeed, with appropriate orientations Cy forms the
angle arg k with its image €}, and the quotient of the constant ratios
l¢ = al/lz — b} on €} and €, is |k

The special cases in which all C; or all € are mapped upon themselves
are particularly important. We have ¢} = ¢ for all ¢y if k> 0 Gf
k <0 the circles are still the same, but the orientation is reversed),
The transformation is then said to be hyperbolic. When k increases the
points Tz, z # a, b, will flow along the circles €y toward b. The con-
sideration of this flow provides a very clear picture of a hyperbolic
transformation.

The case € = C; ocours when |k] = 1. Transformations with this
property are called elliptic. When arg k varies, the points Tz move
along the circles C,. The corresponding flow circulates about @ and b
in different directions,

The general linear transformation with two fixed points is the product
of a hyperbolic and an elliptic transformation with the same fixed points.

The fixed points of a linear transformation are found by solving the
equation

oz + B
12) z == o
In general this is a quadratic equation with two roots; if v = 0 one of
the fixed points is «. It may happen, however, that the roots coincide.
A linear transformation with coinciding fixed points is said to be parebolic.
The condition for this is (a — §)? = 46y,
If the equation (12) is found to have two distinet Toots a and b, the
transformation can be written in the form

w—a z—a
'w—b_—kz—-b.

We can then use the Steiner circles determined by a, b to discuss the
nature of the transformation. It is important to note, however, that
the method is by no means restricted to this case. We can write any
linear transformation in the form (11) with arbitrary a, b and use the
two circular nets to great advantage,
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- Tor the diseussion of parabolic transformations it is desirable to intro-
duce still another type of circular net. Consider the transformation

w = E%'Ei +c

It is evident that straight lines in the w~plane correspond to cireles
through a; moreover, parallel lines correspond to mutually tangent circles.
In particular, if w = u - @ the lines u = constant and » = constant
correspond to two families of mutually tangent circles which intersect
at right angles (Fig. 7). This configuration can be considered as a
degenerate set of Steiner circles. It is determined by the point a and
the tangent to one of the families of circles. We shall denote the images
of the lines » = constant by €y, the circles of the other family by Cu
Clearly, the line v = Im ¢ corresponds to the tangent of the circles Cy;
its direction is given by arg «.

F1G- 7. Degenerste Steiner circles.
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Any transformation which carries o into ¢’ can be written in the form

o )
'=
2 —

-+ e

w — &

It is clear that the circles €, and C» are carried into the circles ¢} and
C; determined by ' and . We suppose now that a = a' is the only
fixed point. Then w = o and we can write

[ [

w—a g -

(13) + ¢
By this transformation the configuration consisting of the circles €, and
C: is mapped upon itself. In (13) a multiplicative factor is arbitrary,
and we can hence suppose that ¢ is real. Then every C; is mapped upon
itself and the parabolic transformation can be considered as a flow along
the eircles (s

A linear transformation that is neither hyperbolic, elliptic, nor
parabolie is said to be lozodromic.

EXERCISES
1. Find the fixed points of the linear transformations

22 _Sz—4 z

BT Zz—1 wm2—-z‘

2

W == gy w

Is any of these transformations elliptic, hyperbolic, or parabolic?
2. Suppose that the coefficients of the transformation

_a+b
T ezt d

Sz

are normalized by ad — be = 1. Show that § is elliptic if and only if
—2 < a+d <2 parsbolic if ¢ +d = 42, hyperbolic if o +d < —2
or >2.

3. Show that a linear transformation which satisfies S*z = 2 for
some integer n is necessarily elliptic.

4. If S is hyperbolic or loxedromie, show that S*z converges to a fix-
point as n — @, the same for all 2, except when z coincides with the other
fixpoint. (The limit is the attractive fixpoint, the other, if there is one, is
the repellent fixpoint. What happens when n — — ©? What happens
in the parabolic case?)

5. Find all linear transformations which represent rotations of the
Riemann sphere,

6. Find all circles which are orthogonal to |zf = 1 and |z — 1} = 4,
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7. In an obvious way, which we shall not try to make precise, a family
of transformations depends on & certain number of real parameters. How
many real parameters are there in the family of all linear transformations?
How many in the families of hyperbolic, elliptie, parabolic transforma-
tions? How many linear transformations leave s given circle C invariant?

4, ELEMENTARY CONFORMAL MAPPINGS

The conformal mapping associated with an analytic function affords an
excellent visualization of the properties of the latter; it can well be com-
pared with the visualization of a real function by its graph. It is there-
fore natural that all questions connected with conformal mapping have
received a great deal of attention; progress in this direction has increased
our knowledge of analytic functions considerably. In addition, con-
formal mapping enters naturally in many branches of mathematical
physics and in this way accounts for the immediate usefulness of complex-
function theory.

One of the most important problems is to determine the conformal
mappings of one region onto another. In this section we shall consider
those mappings which can be defined by elementary functions.

4.1. The Use of Level Curves. When a conformal mapping is defined
by an explicit analytic function w = f(2), we naturally wish to gain infor-
mation about the specific geometric properties of the mapping. One of
the most fruitful ways is to study the correspondence of curves induced
by the point transformation. The special properties of the function f2)
may express themselves in the fact that certain simple curves are trans-
formed into curves of a family of well-known character. Any sueh infor-
mation will strengthen our visual conception of the mapping,

Such was the case for mappings by Linear transformations. We
have proved in Sec. 3 that a linear transformation carries circles into
circles, provided that straight lines are included as a special case. By
consideration of the Steiner circles it was possible to obtain a complete
picture of the correspondence.

In more general cases it is advisable to begin with a study of the image
curvesof thelinesx = zoandy == yo. If wewritef(2) = ul(x,y) + iv(z,y),
the image of & = %, is given by the parametric equations u = u{Zo,u},
v = v(xo,y); ¥ acts as a parameter and can be eliminated or retained
according to convenience. The image of ¥ = yq is determined in the
Same way. Together, the curves form an orthogonal net in the w-plane.
Bimilarly, we may consider the curves w{x,y) = uo and v(z,y) = vy in the
z-plane. They are also orthogonal and are called the level curves of w and v.




S0 COMPLEX ANALYSIS

In other cases it may be more convenient to use polar coordinates and
study the images of concentric circles and straight lines through the origin,
Among the simplest mappings are those by a power w = z=. We
consider only the case of real «, and then we may as well suppose that « is
positive. Since
lel=
@ arg 2

juo]
arg w

concentrie circles about the origin are transformed into cireles of the same
family, and half lines from the origin correspond to other half lines. The
mapping is conformal at all points z 3 0, but an angle 8 at the origin is
transformed into an angle af. TFor a # 1 the transformation of the whole
plane is not one to one, and if « is fractional 2= is not even single-valued.
In general we ean therefore only consider the mapping of an angular sec-
tor onto another.

The sector S(e1,¢4), where 0 < ¢ — @1 S 2x, shall be formed by all
points z # 0 such that one value of arg 2 satisfies the inequality

(14)

It is easy to show that So(e1,¢) is a region.
of w = z# is defined by the condition

1 < arg 2 < oo

In this region & unique value

arg W = @ 4rg z

where arg 2 stands for the value of the argument singled out by the condi-

tion (14). This function is analytic with the nonvanishing derivative
Derx logz ... o 3‘9,
2

The mapping is one to one only if a(p: — ¢1) < 2r, and in this case
Sofe1,¢2) is mapped onto the sector Sy(erpy,cres) in the w-plane. It should
be observed that Se(e: + n - 2m¢s + n - 2¢) is geometrically identical
with So(¢1,¢2) but may determine a different branch of 2.

Let us consider the mapping w = 2% in detail. Since u = 2* — 3?
and v = 2zy, we recognize that the level curves u = ug and v = vy are
equilateral hyperbolas with the diagonals and the coordinate axes for
asymptotes. They are of course orthogonal to each other. On the other
hand, the image of £ = 218 v? = 423(x3 — ) and the image of y = y; I8
v* = 4yi(yi + w). Both families represent parabolas with the focus at
the origin whose axes are pointed in the negative and positive direction of
the w-axis. Their orthogonality is well-known from analytic geometry.
The families of level curves are shown in Figs. 8 and 9,
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F1G. 8. z-plane,

For s different family of image curves consider the circles |w — 1| = k

in the w-plane. The equation of the inverse image can be written in the
form

@+ ) = 2@ — ) + k= 1

and represents a family of lemniscates with the focal points +1. The
orthogonal family is represented by

xt — gyt = 2hey + 1

and consists of all equilateral hyperbolas with center at the origin which
Pass through the points +1.

In the case of the third power w = 23 the level curves in both planes
are cubic curves. There is no point in deriving their equations, for their
general shape is clear without calculation. For instance, the curves
% = 4y > 0 must have the form indicated in Fig. 10. Similarly, if we
follow the change of arg w when z traces the line z = z, > 0, we find that
the image curve must have a loop (Fig. 11). Tt is therefore a folium of
Descartes,
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Fla. % w-plane.

The mapping by w = e*is very simple. Thelinesz = zoandy = yo
are mapped onto circles about the origin and rays of constant argument.
Any other straight line in the z-plane is mapped on a logarithmic spiral.
The mapping is one to one in any region which does not contain two points
whose difference is & multiple of 2ri. In particular, a horizontal strip
1 <y <y Yo~ 41 S 27 is mapped onto an angular sector, and if
Y2 — Y1 = = the image is a half plane. We are thus able to map a parallel
strip onto a half plane, and hence onto any circular region. The left half
of the strip, cut off by the imaginary axis, corresponds to a half circle.

It is useful to write down some explicit formulas for the mapping.
The function { = £ -+ 4y = € maps the strip —#/2 < v < #/2 onto the
half plane £ > 0. On the other hand,

§

W=

-1
+1i

=y
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maps ¢ > 0 onto |w] < 1. Henece

e — 1 z
Ww = e‘m-i— = tanh §'
4.2. A Survey of Elementary Mappings. When faced with the prob-
lem of mapping a region @, econformally onto another region , it is
usually advisable to proceed in two steps,  First, we map & onto a circu-
lar region, and then we map the circular region onto Q. In other words,
the general problem of conformal mapping can be reduced to the problem
of mapping a region onto a disk or a half plane. We shall prove, in
Chap. 6, that this mapping problem has a solution for every region
whose boundary consists of a simple closed curve.,

The main tools at our disposal are linear transformations and trang-
formations by a power, by the exponential function, and by the logarithm.
All these transformations have the characteristic property that they map
a family of straight lines or circles on a similar family. For this reason,
their use is essentially limited to regions whose boundary is made up of
circular arcs and line segments. The power serves the particular purpose
of straightening angles, and with the aid of the exponential function we
can even transform zero angles into straight angles.

By these means we can first find a standard mapping of any region

NS
4P\

FiG. 10 ’ FIG. 11
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whose boundary consists of two circular ares with common end points.
Such & region is either a circular wedge, whose angle may be greater than
=, or its complement. If the end points of the arcs are a and b, we begin
with the preliminary mapping 21 = (z — a)/(z — b) which transforms the
given region into an angular sector. By an appropriate power w = 2%
this sector ecan be mapped onto a half plane.

If the circles are tangent to each other at the point a, the transforma-
tion 21 = 1/(z — a) will map the region between them onto a parallel
strip, and a suitable exponential transformation maps the strip onto a
half plane.

. A little more generally, the same method applies to a circular tri-
angle with two right angles. In fact, if the third angle has the vertex
a, and if the sides from & meet again at b, the linear transformation
21 = (2 — a)/(z — b) maps the triangle onto a circular sector. By means
of a power this sector can be transformed into a half cirele; the half circle
is & wedge-shaped region which in turn can be mapped onto 2 half plane.

In this connection we shall treat explicitly a special case which occurs
frequently. Let it be required to map the complement of a line segment
onto the inside or ouiside of a circle. The region is a wedge with the
angle 2x; without loss of generality we may assume that the end points of
the segment are 4 1. The preliminary transformation

_z41

2y =
T =1

maps the wedge on the full angle obtained by exclusion of the negative
real axis. Next we define
Zy = ‘\/21

as the square root whose real part is positive and obtain & map onto
the right half plane. The final transformation

w = 2y~ 1
- 22 -}" 1
maps the half plane onto Jw} < 1.
Elimination of the intermediate variables leads to the correspondence

1 1
(15) +=3(0+3)
w=1z—/22—1,
The sign of the square root is umiquely determined by the condition

fw| < 1, for (z — v/2* — 1)(z + V2 — 1) = 1. If the sign is changed,
we obtain a mapping onto jw| > 1.
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For a more detailed study of the mapping (15) we set w = pe™ and
obtain
T == %(p -+ i) cos @
fi]

1 1y .
Yy = Q(p“ ;)Sl}(} 8.

$2 y2 _
B ¥ T B — 7 F =

and elimination of p

Elimination of ¢ yields

(16) 1

22 ¥
(a7 cosT6  SnTh

Hence the image of a circle Jw] = p < 1 is an ellipse with the major axis
p -+ p~* and the minor axis g! — p. The image of a radius is half a
branch of a hyperbola. The ellipses (16) and the hyperbolas (17) are
confocal. The correspondence is illustrated in Fig. 12.

Clearly, the transformation (15) allows us to include in our list of
elementary conformal mappings the mapping of the outside of an ellipse
or the region between the branches of a hyperbola onto & circular region.
It does not, however, allow us to map the inside of an ellipse or the
inside of a hyperbolic branch.

As a final and less trivial example we shall study the mapping defined
by a cubic polynomial w = @g? + a12® -+ awz + 5. The familiar trans-
formation z = 2, — a,/3a, allows us to get rid of the quadratic term,

A
-

Fla. 12, Mapping by 2 = §(w -+ w1,
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and by obvious normalizations we can reduce the polynomial to the form
w = 2* — 32. The coeflicient for z is chosen so as to make the derivative
vanish forz = +1.

Making use of the transformation (15) we introduce an auxiliary
variable { defined by

1
18 = + —r

Our cubic polynomial takes then the simple form

(19) w= 4oy
¢

We note that each z determines two values {, but they are reciprocal
and yield the same value of w. In order to obtain a unique { we may
impose the condition |{] < 1, but then the segment (—2,2) must be
excluded from the z-plane.

It i now easy to visualize the correspondence between the z- and
w-planes. To the cirele |§] = p < 1 corresponds an ellipse with the
semiaxes p~! 4 p in the z-plane, and one with the semiaxes g% 4 p® in
the w-plane. Similarly, a radius arg { = 6 corresponds to hyperbolic
branches in the z- and w-planes; the one in the z-plane hag an asymptote
which makes the angle — 6 with the positive real axis, and in the w-plane
the corresponding angle is —36. The whole pattern of confocal ellipses
and hyperbolas remains invariant, but when z describes an ellipse w will
trace the corresponding larger ellipse three times. The situation is thus
very similar to the one in the case of the simpler mapping w = 2% For
orientation the reader may lean on Fig. 12, except that the foci are not 32.

For the region between two hyperbolic branches whose asymptotes
make an angle < 27/3 the mapping is one to one. We note in particular
that the six regions into which the hyperbola 322 — y* = 3 and the z-axis
divide the z-plane are mapped onto half planes, three of them onto the
upper half plane and three onto the lower. The inside of the right-hand
branch of the hyperbola corresponds to the whole w-plane with an incision
along the negative real axis up to the point —2.

EXERCISES

All mappings are to be conformal.

1. Map the common part of the disks }z] < 1 and |z — 1| < 1 on the
inside of the unit circle. Choose the mapping so that the two symmetries
are preserved.

2. Map the region between |z| = 1 and |z — }| = } on a half plane.
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3. Map the complement of the arc jz] = 1,y = 0 on the outside of the
unit cirele so that the peints at « correspond to each other.

4, Map the outside of the parabola y? = 2pz on the disk Jw] < 180
that z = O and 2z = —p/2 correspond to w = 1 and w = 0. (Lindelsf.)

5. Map the inside of the right-hand branch of the hyperbola
z? — y* = a? on the disk Jw| < 1 so that the focus eorresponds to w = 0
and the vertex to w = —1. (Lindelsf.)

6. Map the inside of the lemniscate |2? — a? = p?(p > a) on the
disk Jwl < 1 so that symmetries are preserved. (Lindeldf.)

7. Map the outside of the ellipse (x/a) 4+ (y/b)* = 1 onto jw| < 1
with preservation of symmetries.

8. Map the part of the z-plane to the left of the right~hand branch of
the hyperbola 22 — y* = 1 on 2 half plane. (Lindelsf.)

Hint: Consider on one side the mapping of the upper half of the
region by w = 2%, on the other side the mapping of a quadrant by

w = 2% - 3z,

4.3. Elementary Riemann Surfaces. The visualization of a function
by means of the corresponding mapping is completely clear only when
the mapping is one to one. If this is not the case, we can still give our
imagination the necessary support by the introduction of generalized
regions in which distinct points may have the same coordinates. In
order to do this it is necessary to suppose that points which occupy the
same place can be distinguished by other characteristies, for instance a
tag or a color. Points with the same tag are considered fo lie in the
same sheel or layer.

This ides leads to the notion of a Riemann surfoce. It is not our
intention to give, in this connection, a rigorous definition of this notion.
For our purposes it is sufficient o introduce Riemann surfaces in a purely
descriptive manner. We are free to do so as long as we use them merely
for purposes of illustration, and never in logical proofs.

The simplest Riemann surface is connected with the mapping by a
power w = 2z, where n > 1 is an integer. We know that there is a
one-to-one correspondence between each angle (b — 1)(2r/n) < arg 2
<k(2r/n), k=1, ..., n, and the whole w-plane except for the posi-
tive real axis. The image of each angle is thus obtained by performing
a “cut” along the positive axis; this cut has an upper and a lower “edge.”
Corresponding to the n angles in the z-plane we consider n identical copies
of the w-plane with the cut. They will be the “sheets” of the Riemann
surface, and they are distinguished by a tag k which serves to identify
the corresponding angle. When z moves in its plane, the corresponding
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point w should be free to move on the Riemann surface. For this reason
we must attach the lower edge of the first sheet to the upper edge of
the second sheet, the lower edge of the second sheet to the upper edge
of the third, and so on. In the last step the lower edge of the nth sheet
is attached to the upper edge of the first sheet, completing the cycle,
In a physical sense this is not possible without self-intersection, but the
idealized model shall be free from this diserepancy. The result of the
construction is a Riemann surface whose points are in one-to-one corre-
spondence with the points of the z-plane. What is more, this corre-
spondence is continuous if continuity is defined in the sense suggested
by the construction.

The cut along the positive axis could be replaced by a cut along any
simple are from 0 to = ; the Riemann surface obtained in this way should
be considered as identical with the one originally constructed. TIn other
words, the cuts are in no way distinguished lines on the surface, but
the introduction of specific cuts is necessary for descriptive purposes.

The point w = 0 is in a special position. It connects all the sheets,
and a curve must wind » times around the origin before it closes. A
point of this kind is called a branch poini. If our Riemann surface is
cousidered over the extended plane, the point at « is also a branch point.
In more general cases a branch peoint need not connect all the sheets;
if it connects h sheets, it is said to be of order b — 1.

The Riemann surface corresponding to w = e is of similar nature.
In this case the function maps each parallel strip (¢ — D2xr <y <k 2
onto a sheet with a cut along the positive axis. The sheets are attached
to each other so that they form an endless screw. The origin will not be
a point of the Riemann surface, corresponding to the fact that e* is never
Zero.

The reader will find it easy to construct other Riemann surfaces. We
will illustrate the procedure by consideration of the Riemann surface
defined by w = cose. A region which is mapped in a one-to-one manner
onto the whole plane, except for one or more cuts, is called a fundamental
region. For fundamental regions of w = cos z we may choose the strips
(k — )x < z < kr. Each strip is mapped onto the whole w-plane with
cuts along the real axis from — o« to —1 and from 1 to «. The line
z = kr corresponds to both edges of the positive cut if k is even, and

<
-

<
<

FI1G. 13. The Riemann surface of cos z.
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ri16. 1. Fundamental regions of cos z.

to the edges of the negative cut if k is odd. If we consider the two
strips which are adjacent along the line z = kx, we find that the edges
of the eorresponding cuts must be joined crosswise so as to generate a
simple branch point at @ = +1. The resuliing surface has infinitely
many simple branch points over w = 1 and w = —1 which alternatingly
connect the odd and even sheets.

An attempt to illustrate the connection between the sheets is made in
Fig. 13. It represents a cross section of the surface in the case that the cuts
are chosen parallel to each other. The reader should bear in mind that
any two poinis on the same level can be joined by an are which does not
infersect any of the cuts,

Whatever the advantage of such representations may be, the clearest
picture of the Riemann surface is obtained by direct consideration of the
fundamental regions in the z-plane. The interpretation is even simpler
if, as in Fig. 14, we introduce the subregions which correspond to the
upper and lower half plane. The shaded regions are those in which cos z
has a positive imaginary part. Each region corresponds to a half plane
on which we mark the boundary points 1 and —1. For any two adjacent
regiong, one white and one shaded, the half planes must be joined across
one of the three intervals {(—,—1), (—=1,1), (1,»). The choice of
the correct junction is automatic from a glance at the corresponding
situation in the z-plane,

EXERCISES
1. Deseribe the Riemann surface associated with the function

2. Same problem for w = (2 — 1)
3. Same problem for w = 8 — 3z,

I
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4. Describe the general nature of the Riemann surface associnted
with the funetion e,

5. Show that the equation w? 4+ 2% — wz = 0 defines a one-to-one
correspondence between two Riemann surfaces with three sheets. Hint:
Parametrize by setting w == #z. Describe the mapping from { to z and
from t to w,

1. FUNDAMENTAL THEOREMS

Many important properties of analytic functions are very difficult
to prove without use of complex integration. For instanee, it is
only quite recently that it became possible to prove, without
resorting to complex integrals or equivalent tools, that the deriva-
tive of an analytic function is continuous, or that the higher
derivatives exist. At present the integration-free proofs are, to
say the least, much more difficult than the classical proofs.

As in the real case we distinguish between definite and indef-
inile tnfegrals. An indefinite integral is a function whose deriva-
tive equale a given analytic function in a region; in many ele-
mentary cases indefinite integrals can be found by inversion of
known derivation formulas. The definite integrals are taken over
differentiable or piecewise differentiable arcs and are not limited
to analytic functions. They can be defined by a limit process
which mimics the definition of a real definite integral. Actu-
ally, we shall prefer to define complex definite integrals in terms
of real integrals. This will save us from repeating existence
proofs which are essentially the same as in the real ecase. Natu-
rally, the reader must be thoroughly familiar with the theory of
definite integrals of real continuous functions.

1.1. Line Integrals. The most immediate generalization of a
real integral is to the definite integral of a complex function over
a real interval. If f(8) = w{f) 4+ &(f) is & continuous function,

m
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defined in an interval (a,b), we set by definition

Y Lbf(t)dtm L"u(t)dz+i[:’v(z) dt.

This integral has most of the properties of the real integral. In partieu-
lar, if ¢ = a + if is & complex constant we obtain

@) [lawa=c [ 10a,

for both members are equal to

Lb(au—ﬁz;)dbfiﬁf(av-{-ﬁu)dt.

When a £ b, the fundamenta)] inequality

@ IRCEIEINOL

holds for arbitrary complex f(f). To see this we choose ¢ = ¢~ with a
real 6 in (2) and find

Re [e""" f: 1) dt] = L *Re [e*f(0] dt < ] *1F@)] dt.

For @ = arg j; b J(?) dt the expression on the left reduces to the absolute

value of the integral, and (3) results.}

We consider now a piecewise differentiable arc 4 with the equation
z=2(),a S t £ b If the function f(z) is defined and continuous on v,
then f(z(f)) is also continuous and we can set

@ [ 5@ de = [*rwe @ a

This is our defindtion of the complex line integral of f(z) extended over the
arcy. Intheright-hand member of (4), if #/(¢) is not continuous through-
out, the interval of integration has to be subdivided in the obvious man-
ner. Whenever a line integral over an arc v is considered, let it be tacitly
understood that v is piecewise differentiable,

The most important property of the integral (4) is its invariance under
a change of parameter. A change of parameter is determined by an
increasing function ¢ = #(r) which maps an interval &« < r < 8 onto
a =t = b; we assume that {(r) is piecewise differentiable. By the rule

. o [P
t 8 iz not defined if j; fdt = 0, but then there is nothing o prove,
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for changing the variable of integration we have

[ ez @ @ = [ e e d.

But 2/ (t(r))t' () is the derivative of 2(t{r)) with respect to r, and hence the
integral (4) has the same value whether v be represented by the equation
= z(f) or by the equation z = 2(i(r)}.
In Chap. 3, See. 2.1, we defined the opposite arc —+ by the equation
z=2(—1t), ~bSt5 —~a Wehave thus

[ 1@ de = [\ fa(=0)(— (=),
-y
and by a change of variable the last integral can be brought to the form

J, 1@z @ .
We conclude that

5) [_ 1@ &=~ [ i@ d.

The integral (4) has also & very obvious additive property. It is
quite clear what is meant by subdividing an arc ¥ into a finite number of
subarcs. A subdivision can be indicated by a symbolic equation

vye=mntyvt o v,
and the corresponding integrals satisfy the relation

©) faa=[ fde+ [ fdet -+ [ fea

'n+'rr¥j-.“'-§-1m ./;a f'r: f'rn

Finally, the integral over a closed curve is also invariant under s shift
of parameter. The old and the new initial point determine two subarcs
41, vz, and the invariance follows from the fact that the integral over
1 + 72 is equal to the integral over s + 71

In addition to integrals of the form (4) we can also consider line inte-
grals with respect to Z. The most convenient definition is by double

conjugation
f fdz = f fd=.
T ki

Using this notation, line integrals with respect to 2 or y ean be introduced
by : ‘

frae=5([ 10+ [ 1)

[faw =g ([ 1de— [ 1E)
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With f = » 4 & we find that the integral (4) ean be written in the form

s L(udmwvdy)+if7(udy+vdx)

which separates the real and imaginary part.

Of course we could just as well have started by defining integrals of
the form

j;pdx+qdy,

in jwhich case formula (7) would serve as definition of the integral (4).
It is a matter of taste which one prefers. H

An essentially different line integral is obtained by integration with

respect to arc length. Two notations are in eommon use, and the defini-
tion is

®) [ 1ds = [ nidel = [ sl

This integral is again independent of the choice of parameter. In con-
trast to (b} we have now

[ fided = [ sidel

while (6) remains valid in the same form. The inequality

) |[7az| = [ 11+ jad

is 8 consequence of (3).

For f = 1 the integral (8) reduces to f |dz| which is by definition the

"
length of v. As an example we compute the length of a circle. TFrom

the parametric equation z = 2(f) = a 4 pe®, 0 £ 1 £ 2r, of a full cirele
we obtain 2'(f) = ¢pet and hence

P B
j;) £ @) dt = ) P dt = 2xp
as expected.

L.2. Rectifiable Ares. The length of an arc can also be defined as the
least upper bound of all sums

(0)  [elt) — 2(to)] + la(ts) — 2] + -+ - + |elta) — 2(tas)]

where ¢ = fy < t; < - -+ <§, =b. If this least upper bound is finite
we say that the arc is rectifiable. It is quite easy to show that piecewise

differentiable arcs are rectifiable, and that the two definitions of length
coineide,
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Because lz(h) — z(h)| S lo(b) — 2(tdl, ) — gt )| =
2@t} = 2(t-1)| and |2(t) —~ 2(b-2)| S |2(t) — 2(-)] + ) — Yyl
it is clear that the sums (10) and the corresponding sums

le(t) — z@t)l + - - - + et — 2t
lylt) — y@| + -+ -+ ly@) — y{ta-1)]

are bounded at the same time. When the latter sums are bounded, one
says that the functions x() and y(f) are of bounded variation. An are
z = z(1) is rectifiable if and only if the real and imaginary parts of 2(f) are of
bounded variation.

If 4 is rectifinble and f(z) continucus on v it is possible to define
integrals of type (8) as a limit

[ £ds =1lim Y felet — 2
k=1

Here the limit is of the same kind as that encountered in the definifion of
a definite integral.

Integrals over rectifisble arce are seldom needed in the theory of
analytie functions, and certainly not in its elementary parts. However,
the notion is one that every mathematician should know.

1.3. Line Integrals as Functions of Ares, General line integrals of
the form j p dx -}- ¢ dy are often studied as functions (or functionals) of
v

the are v, It is then assumed that p and ¢ are defined and confinuous in
a region £ and that v is free to vary in . An important class of integrals
is characterized by the property that the integral over an are depends only
on its end points, In other words, if vy and v» have the same initial point

and the same end point, we require that [ WP de +qgdy = [w pdz 4 qdy.

To say that an integral depends only on the end points is equivalent to
saying that the integral over any closed curve is zero. Indeed, if vis a
closed curve, then ¥ and —+ have the same end points, and if the integral
depends only on the end points, we obtain

[=1.--1.

and consequently [ = 0. Conversely, if v, and y. have the same end
4
points, then v, — ¥, is a closed curve, and if the integral over any closed
curve vanishes, it follows that f = [ .
. Y1 i
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FIG, 15

The following theorem gives a necessary and sufficient condition
under whieh a line integral depends only on the end points.

Theorem 1. The line integral [T p dx + g dy, defined in Q, depends only
on the end points of v & und only if there exists a function Ulzy) in &
with the partial derivatives 3U /dx = p, dU /8y = q.

The sufficiency follows at once, for if the condition is fulfilled we can
write, with the usual notations,

_refal au , _fkd
[pa+aan = [M(5Ev0+ 50 v0)a - ['§ Va0 @
= U@®y®) — Ulz(@)y(@),
and the value of this difference depends only on the end points. To
prove the necessity we choose & fixed point (zo,y0) € G, join it to (z,3)

by a polygon «, contained in ©, whose sides are parallel to the coordinate
axes (Fig. 15) and define a function by

Uey) = [ pda+qdy.

Since the integral depends only on the end points, the function is well
defined. Moreover, if we choose the Iast segment of v horizontal, we
can keep y constant and let z vary without changing the other segments.
On the last segment we ean choose z for parameter and obtain

Ug) = [ play) dz + const,

the lower limit of the integral being irrelevant, From this expression it
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follows at once that 8U/3z = p. In the same way, by choosing the last
segment vertical, we can show that aU/dy = ¢.

It is customary to write dU = (9U/dx) dx + (8U/ay) dy and to say
that an expression p dz + ¢ dy which can be written in this form iz an
exact differential. Thus an integral depends only on the end points if and
only if the integrand is an exact differential. Observe that p, g and U can
be either real or complex. The function U, if it exists, is uniquely deter-
mined up to an additive constant, for if two functions have the same
partial derivative their difference must be constant.

Whenisf(z) dz = f(2) dz + if(2) dy an exact differential? According
to the defimtion there must exist a function F(z) in @ with the partial
derivatives

aF(2)

5 = 1)
() .
If this is s, F(2) fulfills the Cauchy-Riemann equation
oF _ _oF
3 dy’

since f(z) is by assumption continuous {otherwise f fdz would not be
k
defined) #(z) is analytic with the derivative f(z) (Chap. 2, Sec. 1.2).
T'he integral fT [ dz, with continuous f, depends only on the end points of

Y if and only if f is the derivative of an analytic function in Q.
~ Under these circumstances we shall prove later that f(z) is itself
analytic,
As an immediate application of the above result we find that

1) L (z—a)de =0

for all elosed curves v, provided that the integer n is = 0. In fact,
(z — o) is the derivative of (2 — a)y**1/(n + 1), a function which is
analytic in the whole plane. If n is negative, but # —1, the same
result holds for all closed curves which do not pass through e, for in the
complementary region of the point g the indefinite integral is still analytic
and single-valued. For » = —1, (11) does not always hold. Consider
& circle C' with the center a, represented by the equation z = a + pe¥,
0={<2. Weobtain

JorZ = [Fiat=om.
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This result shows that it is impossible to define a single-valued branch of
log (z — @) in an annulus p; < |2 — a| < ps.  On the other hand, if the
closed curve v is contained in s half plane which does not contain a, the
integral vanishes, for in such a half plane a single-valued and analytic
branch of log (z — @) ean be defined.

EXERCISES
1. Compute

Lxdz

where 7 is the directed line segment from 0 to 1 4 4,
2, Compute
[E dfmr z de,

for the positive sense of the circle, in two ways: first, by use of a parameter,

and second, by observing that z = é« z-+3 = %(z + ﬁ) on the circle.
z

3. Compute
[ dz
k=222 — 1
for the positive sense of the circle.
4. Compute

Jyon 12— 11 1del.

) 5. Suppose that f(z) is analytic on s closed curve v (i.e., fis analytic
in a region that contains y). Show that

[ 731 @) e

is purely imaginary. (The continuity of F(2) is taken for granted.)
6. Assume that f(2) is analytic and satisfies the inequality |f(z) — 1]
< 11in a region Q. Show that

@,
deﬁ = ()

for every closeq curvein Q.  (The continuity of f'(z) is taken for granted.)
7. If P(2) is a polynomial and € denotes the circle |z — al = R, what

is the value of [c P(z) dz?  Answer: —2xiRP'(a).
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8. Describe a set of circumstances under which the formula

/;logzdz = 0

jz meaningful and true.

1.4, Cauchy’s Theorem for a Rectangle. There are several forms of
Cauchy’s theorem, but they differ in their topological rather than in their
analytical content. It is natural to begin with a case in which the topo-
logical considerations are trivial.

We consider, specifically, a rectangle B defined by inequalities
a<z<besysd ltsperimeter can be considered as a simple closed
curve consisting of four line segments whose direction we choose so that B
lies to the left of the directed segments. The order of the vertices is thus
(a,0), (b,c}, (b,d), (a,d). We refer to this closed curve as the boundary
curve or contour of R, and we denote it by aR.

We emphasize that R is chosen as a closed point set and, hence, is not
a region, In the theorem that follows we consider a function which is
analytic on the rectangle . We recall to the reader that such a fune-
tion is by definition defined and analytic in a region which contains R.

The following ig a preliminary version of Cauchy’s theorem:

Theorem 2. If the funciion f{z) is enalylic on R, then

12) fa J(@ dz = 0.

The proof is based on the method of bisection. Let us introduce the
notation

wB) = [ fe) de

which we will also use for any rectangle contained in the given one. If
R is divided into four congruent rectangles B, R® R® RW, we find
that

(13) 2(R) = o(R?®) + n(R®) + o(R®) + 9(B),

for the integrals over the commeon sides cancel each other. It is impor-
tant to note that this fact ean be verified explicitly and does not make
illicit use of geometric intuition. Nevertheless, a reference to Fig. 16 is
helpful,

+ This is standard notation, and we shall yse it repeatedly. Note that by earlier
tonvention 0F is also the boundary of R as a point set (Chap. 3, SBec. 1.2).
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FIG.16. Bisection of rectangle.

It follows from (13) that at least one of the rectangles R®, k = 1,2, 3,
4, must satisfy the condition

[7(R®)| = Hn(R)!.

We denote this rectangle by R,; if several R® have this property, the
choice shall be made according to some definite rule.

This process can be repeated indefinitely, and we obtain a sequence of
nested rectangles R DRy DO R: D -+ » DR, D - - + withthe property

I(Bw)| Z Hn(Ra-l
and henee

(14) In(Ra)| 2 4 ln(R)].

The rectangles R, converge to a point z* € R in the sense that &, will
be contained in a prescribed neighborhood |z — 2*| < & as soon as n is
sufficiently large. First of all, we choose & so small that f(2) is defined
and analytic in |z — 2% < 8. Secondly, if ¢ > 0 is given, we can choose
& so that

1@ ""j:(z*) — @] <e
or
(15) If@@) — f&*) — (2 — 29 ¥ < ¢z — 2%

for |z — 2*| < 5. We assume that 5 satisfies both conditions and that
B, is contained in |z — 2*] < &.
We make now the observation that

/z'(R,.) dz = 0
fm"; 2de = 0.
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These trivial special cases of our theorem have already been proved in
Spc. 1.1. We recall that the proof depended on the fact that 1 and z are
the derivatives of z and 2%/2, respectively.

By virtue of these equations we are able to write

1B = [ U@ = 16%) = (= 2 ds,
and it follows by (15) that

(16) R S s [,

PR
TR l2 = 2% - |d].

In the last infegral |z — 2*] is at most equal to the diagonal d, of R..
If L. denotes the length of the perimeter of K., the integral is hence
< dplia. But if d and L are the corresponding quantities for the original
rectangle R, it is clear that d, = 2-"d and L, = 2—*L. By (16) we have
hence
In(Ra)| £ 47" dL g,

and comparison with (14) yields
|7(R)| < dL e

Since ¢ is arbitrary, we can only have 9(E) = 0, and the theorern is proved.

This beautiful proof, which could hardly be simpler, is essentially due
to E. Goursat who discovered that the classical hypothesis of & continu-
ous f'(z) is redundant. At the same time the proof is simpler than the
earlier proofs inasmuch as it leans neither on double integration nor on
differentistion under the integral sign.

The hypothesis in Theorem 2 can be weakened considerably. We
shall prove at once the following stronger theorem which will find very
important use.

Theorem 3. Let f(z) be analytic on the set B’ obtained from a reclangle R
by omitting a finite number of intertor points {;.  If 4t is true that

limge, (2 — £f(2) = 0
Jor all j, then

faR fz) dz = 0.

It is sufficient to consider the case of a single exceptional point ¢, for
evidently E can be divided into smaller rectangles which contain at most
one §,.

We divide R into nine rectangles, as shown in Fig. 17, and apply
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Theorem 2 to all but the rectangle R, in the eenter. If the corresponding
equations (12) are added, we obtain, after cancellations,

an .[ aiaf de = amf dz.
If ¢ > O we can choose the rectangle By so small that
¢
< D

on 3. By (17) we have thus

¥ aRfdzl = sLRo 121‘:3321

If we assume, as we may, that B, is a square of center {, elementary esti-
mates show that

|de]
faRn 12 — ﬂ <8

Thus we obtain
] Jda [ < 8,
and since ¢ is arbitrary the theorem follows.

‘We observe that the hypothesis of the theorem is certainly fulfilled if
J(2) is analytic and bounded on R’

1.5. Cauchy’s Theorem in a Circular Disk. 1t is not true that the
integral of an analytic function over a closed curve is always zero.

COMPLEX INTEGRATION 113

Indeed, we have found that

when (' is a circle about a. In order to make sure that the integral
vanishes, it is necessary to make a special agsumptlion coneerning the
region 1 in which f(z} is known to be analytic and to which the curve v is
restricted. We are not yet in a position to formulate this condition, and
for this reason we must restriet attention to a very speeial case. In
what follows we assume that € is an open circular disk |z — 2o < p to
be denoted by A.

Theorem 4. If f{z) 7s analytic in an open disk A, then
(18) [ i@ dz=0
¥

for every closed curve v in A.

The proof is a repetition of the argument used in preving the second
half of Theorem 1. We define a function F(z) by

(19) F) = [ fde

where o consists of the horizontal line segment from the center (zo,y0)
to (x,0) and the vertical segment from (x,y0) to (z,); 1t is immediately
seen that 8F /8y = if{z). On the other hand, by Theorem 2 ¢ can be
replaced by a path consisting of s vertical segmeni followed by a hori-
zontal segment. This choice defines the same function F(z), and we
obtain 8F/dz = f(z). Hence F(2) is analytic in A with the derivative
f(2), and f(z} dz is an exact differential,

Clearly, the same proof would go through for any region which con-
tains the rectangle with the opposite vertices 2o and z as soon as it con-
tains 2. A rectangle, a half plane, or the inside of an ellipse all have
this property, and hence Theorem 4 holds for any of these regions. By
this method we cannot, however, reach full generality.

For the applications it is very important that the conclusion of
Theorem 4 remains valid under the weaker condition of Theorem 3. We
state this as a separate theorem.

Theorem 5. Lel f(2) be analytic in the region A’ obtained by omitting a
Sinite number of points t; from an open disk A. If f(z) satisfies the con-
dition. lim, (e — £)f(2) = O for oll §, then (17) holds for any closed
curge v in A,
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FIG. 18

The proof must be modified, for we cannot let ¢ pass through the

exceptional points. Assume first that no {; lies on the lines z = x4 and
¥ = y. 1t is then possible to avoid the exceptional points by letting ¢
consist of three segments (Fig. 18). By an obvious application of |

Theorem 3 we find that the value of F(2) in (18) is independent of the

choice of the middle segment; moreover, the last segment can be either

vertical or horizontal. We conclude as before that F(z) is an indefinite
integral of f(z), and the theorem follows.

In case there are exceptional points on the lines z = zp and y = yo
the reader will easily convinee himself that a similar proof can be carried
out, provided that we use four line segments in the place of three.

2. CAUCHY’S INTEGRAL FORMULA

Through a very simple application of Cauchy’s theorem it becomes
possible to represent an analytie function f(z) as a line integral in which
the variable z enfers as a parameter. This representation, known as
Cauchy's integral formula, has numerous important applications, Above
all, it enables us to study the local properties of an analytie function in
great detail.

2.1. The Index of a Point with Respect to a Closed Curve. As a
preliminary to the derivation of Cauchy’s formula we must define a notion
which in a precise way indicates how many times a closed curve winds
around a fixed point not on the curve. If the curve is piecewise differ-
entiable, as we shall assume without serious loss of generality, the defi-
nition can be based on the following lemma:
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Lemma 1. If the piccowise differentiable closed curve vy doee not pass
through the point a, then the value of the integral

fvzﬂ-ifa

is o multiple of 2xt.
This lemma may seem trivial, for we can write

/7 dz =[7d10g(z—~a}=f_rdlog[z-~a|+i[7darg(z~»a).

z—4a

When 2 deseribes a closed eurve, log |z — ol returns to its initial value and
arg (z — a) increases or decreases by a multiple of 2=. This would seem
o imply the lemuma, but more careful thought shows that the reasoning ig
of no value unless we define arg {z — ¢) in a unique way.

The simplest proof is computational. If the equation of yisz = 2{f),
o = 1 £ B, let us consider the function

t_Z()
h(t) = [az(:) — &dt

It is defined and continuous on the cloged interval [o,8], and it has the
derivative

e . 2@
WO = o=

whenever #({} is continuocus. From this equation it follows that the
derivative of e @ (2(f) — a) vanishes except perhaps at a finite number of
pointg, and sinee this function is continuous it must reduce to a constant.
We have thus

Since z(8) = z(a) we obtain ¢#® = 1, and therefore k(8) must be a multiple
of 2ri. 'This proves the lemma.

We can now define the index of the point o with respect to the curve ¥
by the equation

1 dz
n(r,0) = W/vz —-—a

With a suggestive terminology the index is also called the winding number
of v with respect to a.

It is clear that n(—v,8) = —n(y,a).

The following property is an immediate consequence of Theorem 4:
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(i) If v lies inside of a circle, then n{v,a) = 0 for all points a outside of

the same circle.

As & point set v is closed and bounded. Its complement is open and 3
can be represented as a union of disjoint regions, the components of the |
complement. We shall say, for short, that v determines these regions. §
If the complementary regions are considered in the extended plane, there 1
is exactly one which contains the point at infinity. Consequently, +

determines one and only one unbounded region.

(1) As a function of a the index n{v,a) is constant in each of the regions !

determined by v, and zero in the unbounded region.

Any two points in the same region determined by v can be joined by a |
polygon which does not meet y. For this reason it is sufficient to prove
that n(y,a) == n(y,b) if v does not meet the line segment from a to b. §
Outside of this segment the funetion (z — a)/(z — b) is never real and }
= 0. For this reason the principal branch of log [(z — a)/(z — b)) is 4
analytic in the complement of the segment. Its derivative is equal to
(2 — a)y! — (z — b)~1, and if v does not meet the segment we must have

1 1
/. (z“ra - m) de = 0;

hence n(y,a) = n(y,b). If |a| is sufficiently large, v is contained in a
disk |z| < p < |a| and we conclude by (i) that n(v,a) = 0. This proves

that n(y,a) = 0 in the unbounded region. ~

We shall find the case n(y,a) = 1 particularly important, and it is
desirable to formulate a geometric condition which leads to this conse-

quence. For simplicity we take g = (.

Lemma 2. Let 2, 2 be twe poinis on a closed curve v which does not
pass through the origin.  Denote the subarc from 2z to 2o in the diveclion of §
the curve by v1, and the subarc from zs 1o 2, by vs. Suppose that z; lies in
the lower half plane and z» in the upper half plane. If vy does not meet the |
negative real axis and v, does not meet the positive real axis, then n(+,0) = 1. |

For the proof we draw the half lines L, and L. from the origin through 1
z1 and 2 (Fig. 19). Let {4, {2 be the points in which L,, L, intersect a
circle C' about the origin. If € is described in the positive sense, the ]
are C'y from {; to {» does not intersect the negative axis, and the are C;
from {» to {1 does not intersect the positive axis. Denote the directed 1

line segments from z; to {y and from z, to {2 by &), 8. Introducing the
closed curves oy == Yy 4+ 8 — C; — 81, o3 = b7 -+ 6 — Cz - §o WE find

that #(v,0) = n(C,0) + n{e1,0) + n(s+,0) because of cancellations. But
o1 does not meet the pegative axis. Hence the origin belongs to the 3
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L,

Ly

FIG. 19

unbounded region determined by ¢4, and we obtain n{g;,0) = 0. For s
similar reason 7n(ey,0) = 0, and we obtain n(v,0) = »(C,0) == 1.

*EXERCISES

These are not routine exercises. They serve to illustrate the topo-
logical use of winding numbers,

1. Give an slternate proof of Lemma 1 by dividing v into a finite
number of subarcs such that there exists a single-valued branch of
arg (z — a) on each subarc. Pay particular attention to the compact-
Dess argument that is needed to prove the existence of such a subdivision.

2. It is possible to define n{y,u) for any continuous closed curve vy
that does not pass through a, whether piecewise differentiable or not. For
this purpose 4 is divided into subares v1, . . . , v, each contained in a
circular disk that does not include .  Let ox be the directed line segment
from the initial to the terminal point of 4, and set ¢ = 3 + * * * + o,
We define n(v,a) to be the value of n{c,a).

To justify the definition, prove the following:

(a) the result is independent of the subdivision;

(b) if v is piecewise differentinble the new definition is equivalent to
the old;

(¢) the properties (i) and (ii) of the text continue to hold.
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FIG. 20. Part of the Jordan curve theorem.

3. The Jordan curve theorem asserts that every Jordan curve in the

plane determines exaetly two regions. The notion of winding number | |

leads to a quick proof of one part of the theorem, namely that the comple-

ment of 8 Jordan eurve v has at least two components. This will be so if 3

there exists a point ¢ with n(y,a) » 0.

We‘ may assume that Re z > 0 on v, and that there are points z,
zp €y with Im 2; < 0, Im 2, > 0. These points may be chosen so that
there are no other points of v on the line segments from 0 to z; and from 0
10 2. Let v; and v, be the ares of v from z; to 2y (excluding the end
points).

Let o1 be the closed curve that consists of the line segment from 0 to
23 followed by v, and the segment from z; to 0, and let &2 be constructed in
the same way with 4 in the place of v.. Then ¢4 — o9 = +.

The positive real axis intersects both v, and v, {(why?). Choose the
notation so that the intersection . farthest to the right is with v, (Fig. 20).

Prove the following:

(@) nloyzz) = 0, hence n{onz) = 0 for z € va;

(B) nlorz) = nlog,z) = 1forsmall z > 0 (Lemma 2);

(c} the first intersection z; of the positive real axis with v lies on v;

(d} nlos,21) = 1, henee niooz) = 1 forze Y13

{€) there exists a segment of the positive real axis with one end point

on v, the other on v;, and no other points on 4. The points x between
the end points satisfy n(y,x) = +1.

2:2. The Intfzgral Formula. Let f(z) be analytic in an open circular
d-lSk A. Cel_}slder a closed curve v in A and a poini a € A which does not
lie on y. 'We apply Cauchy’s theorem to the function

oy - 1) = Jte),
PO ===y

COMPLEX INTEGRATION 119

This function is analytic for z ¢ a. For z = ¢ it is not defined, but it
satisfies the condition

lim F&)(z — a) = lim (J@&) — f(a)) = 0

e gf 2—a

which is the condition of Theorem 5, We conclude that
f 1@ — 1) . o
v g

This equation ean be written in the form

f(2) d= = f(a) j., dzw’

TR — O

and we observe that the integral in the right-hand member is by defi-
nition 274 - n{y,a). We bhave thus proved:

Theorem 6. Suppose that f(z) is enelytic in an open disk A, and lel v
be a closed curve in A.  For any point a not on v

1 (f@d

Y 1
mifvz— a

(20) n(y,a) * f(a) =
where niy,q) is the index of a with respect o .

In this statement we have suppressed the requirement that @ be a
point in A, 'We have done so in view of the obvious interpretation of
the formula (20) for the case that a is not in A.  Indeed, in this case
n{v,a) and the integral in the right-hand member are both zero, and the
formula remaing correct whatever value we wigh to assign 1o f(a).

It is clear that Theorem 6 remains valid for any region € to which
Theorem 5 can be applied. The presence of exceptional points §; is per-
mitted, provided none of them coincides with a.

The most eommon application is to the case where n(y,e) = 1. We
have then

(21) fla)y = 5 [ 205

and this we interpret as a representation formula. Indeed, it permits us
to compute f(a) as soon as the values of f(z) on vy are given, together
with the fact that f(2) is analytic in A,  In (21) we may let a take differ-
ent values, provided that the order of a with respect to 4 remains equal
to 1. We may thus treat @ as a variable, and it is convenient to change
the notation and rewrite (21) in the form
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It is this formula which is usnally referred to as Cauchy’s integral
Jormula. 'We must remember that it is valid only when n({y,2) = 1, and
that we have proved it only when f(2) is analytic in a disk,

EXERCISES
1. Compute
[ Sa.
fai=1
2, Compute
[ dz
2
Ezlmzz +1

by decomposition of the integrand in partial fractions.

3. Compute
f_mw
— 2
{2l =p ‘z a!
under the condition |a| s p. Hint: make use of the equations 22 = p? and
. dz
ida| = —ip -

2.3. Higher Derivatives. The representation formula (22) gives us an
ideal tool for the study of the local properties of analytic funections. In
particular we can now show that an analytic function has derivaiives of
all orders, which are then also analytic.

We consider a funetion f(z) which is analytie in an arbitrary region Q.
To a point a € @ we determine a é-neighborhood A contained in €, and in
A a cirele ¢ about a. Theorem 6 can be applied to f(2) in A. Since
n(C,a) = 1 we have n{C,z} = 1 for all points z inside of . For such 2
we obtain by (22)

1 [ £
& =anlet =2

Provided that the integral can be differentiated under the sign of
integration we find

oy = L [ SO
%) 16 =5 fo e —ae
and

ISR (7Y
@4) 9@ = 5 [o =y
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1f the differentiations can be justified, we shall have proved the existence
of all derivatives at the points inside of €. Sinee every point in $ lies
inside of some such circle, the existence will be proved in the whole
region €. At the same time we shall have obtained a convenient repre-
sentation formula for the derivatives.

For the justification we could either refer to corresponding theoremsin
the real ease, or we could prove a general theorem concerning line inte-
grals whose integrand depends analytically on a parameter. Actually,
we shall prove only the following lemnma which is all we need in the
present case: )

Lemma 3. Suppose that o{(¢) is continuous on the arc v. Then the
funclion
dy
F.(2) = o) dt
@ = | &=
iz analytic in each of the regions defermined by v, and s derivative is
FI{2) = nF..1i(2).

We prove first that F{z) is continuous. Let zo be a point not on v,
and choose the neighborhood {z — 2| < § so that it does not meet 4.
By resivieting z to the smaller neighborhood 2 — 2| < 5/2 we attain
that it — 2| > 8/2forall fey. From

P — e = =20 [ 2O

we obtain at once
2
{F1(z) — Filzo)} < |2 — 20| - e [7 lel ldel,

and this inequality proves the continuity of Fi(2} at ze.
From this part of the lemma, applied to the function ¢({)/ (¢ — 2d),
we conclude that the difference quotient

Fuiz) — Filze) _ o) dt
Z - Zy r(§ — A — =)

tends to the limit Fu(ze) asz - 25, Henee it is proved that Fi(z) = Fa(2).
The general ease is proved by induction. Suppose we have shown
that F/_,(2) = (n — )F.(z). From the identity

Fu(z) — Fulzo)

- e di [ ek - _edl
[ Lt Kl (S S LA (s zr:)"] + -z f* & — 2™ — 20)
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we can eonclude that F.(z) is continuous. Indeed, by the induction
hypothesie, applied to ¢(£)/(t — 20), the first term tends to zero for
z— 2z, and in the second term the factor of 2 — 2 is bounded in a
neighborhood of zo. Now, if we divide the identity by z — 2, and let 2
tend to z, the quotient in the first term tends to a derivative which by
the induction hypothesis equals (n — 1)F,,1(2). The remaining factor
in the second term is continuous, by what we have already proved, and
hag the Emit F,,.1(z). Hence F,(z) exists and equals nF . 1{z0).

It is clear that Lemma 3 is just what is needed in order to deduce
(23) and (24) in a rigorous way. We have thus proved that an analytic
function has derivatives of all orders which are analytic and can be
represented by the formula (24).

Among the consequences of this result we like to single out two elassi-
cal theorems. The first is known as Morera's theorem, and it can be
stated as follows:

1f 1(2) is defined and continuous in a region Q, and if fv fde =0 for

all closed curves v in Q, then f(z) s analytic in Q.

The hypothesis implies, as we have already remarked in Sec. 1.3, that
J(2) is the derivative of an analytic function F(z). We know now that
J(2) is then itself analytic,

A second classical result goes under the name of Liouville’s theorem:

A function which is analylic and bounded in the whole plane must reduce
to a constant,

For the proof we make use of a simple estimate derived from (24).
Let the radius of C be r, and assume that [f({)] £ M on C. If we apply
(24) with z = a, we obtain at once

(25) [F¥(a)] 5 Mnlr—=.

For Liouville’s theorem we need only the case n = 1. The hypothesis
means that [f({)] £ M on all circles. Hence we can let r tend to oo,
and (25) leads to f'(e) = 0 for all a. We conclude that the function is
constant.

Liouville’s theorem leads to an almost trivial proof of the fundamental
theorem of algebra. Suppose that P(z) is a polynomial of degree > 0. If
P(z) were never zero, the function 1/P(z) would be analytic in the whole
plane. We know that P(z) — « for z— w, and therefore 1/P(z) tends
to zero, This implies boundedness (the absolute value is continuous on
the Riemann sphere and has thus a finite maximum), and by Liouville’s
theorem 1/P(z) would be constant. Since this is not so, the equation
P(z) = 0 must have a root.

The inequality (25) is known as Cauchy’s estimate. 1t shows above
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all that the successive derivatives of an analytic function f:zxnnot be
arbitrary; there must always exist an 3 and an 7 so fzhat (25) is fulfilled.
In order to make the best use of the inequality it is 1mpert3_mt that r be
judiciously chosen, the object being to minimize the function M(r)r—n,
where M(r) is the maximum of [fl on |§ — a| = r.

EXERCISES
1. Compute

e de, [ a1 ~2mde, [ 1o~ al-|del (lal # o).
fo] =1 lz] =2 le]=0p
2. Prove that a funetion which is analyiiec in the whole plane and
gatisfies an inequality |f(2)| < lz|” for some n and all sufficiently large |2|

reduces to a polynornial.

3. ¥ f(2) is analytic and |f(z)| S M for |2| £ R, find an upper bound
for If ()} in |2] £ p < R.

i i(f )j!(z) ils ‘auaiytie for |z} < 1and |f(z)| £ 1/(1 — |2)), find the best
estimate of [f®(0)| that Cauchy’s inequality will yield. .

5. Show that the successive derivatives of an analytic funetion at a
point can never satisfy |f™(2}| > nln". Formulate a sharper theorem of

the same kind,

*6. A more general form of Lemma 3 reads as follows: _

Let the function ¢{z,¢) be continuous as a function of both vanablt?s
when 2 lies in a region @ and @ < ¢ £ 8. Suppose further that ¢(z?) is
analytic as a function of z € for any fixed t. Then

F@ = [ olad dt
is analytic in z and

(26) Fe = [’ "2&?%?2 a&.

To prove this represent ¢(z,f) as a Cauchy integral

1 1 et
‘P(z;t) == 51}“5 [C’ 'g:'“::""; di.

Fill in the necessary details to obtain

~ L o &
PO = [, (o [ oo ) %5

and use Lemmasa 3 to prove (26).
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Remark: It is interesting to note that the powerful Cauchy theorem
makes it unnecessary to assume that aF/a3z is a uniform limit of the differ-
enee quotient.

3. LOCAL PROPERTIES OF ANALYTIC FUNCTIONS

We have already proved that an analytic function has derivatives of
all orders. In this seetion we will make a closer study of the local

properties. It will include a classification of the isolated singularities of §

analytic functions.

3.1. Removable Singularities. Taylor’s Theorem. In Theorem 3
we introduced a weaker condition which could be substituted for ana-
Iyticity at a finite number of points without affecting the end result. We
showed moreover, in Theorem 5, that Cauchy’s theorem in a circular disk
remains true under these weaker conditions. This was an essential point
in our derivation of Cauchy’s integral formula, for we were required to
apply Cauchy’s theorem to a function of the form (f(z) — f(a))/(z — a).
Finally, it was pointed out that Cauchy’s integral formula remains
valid in the presence of a finite number of exceptional points, sll satis-
fying the fundamental condition of Theorem 3, provided that none of
them coincides with a.  This remark is more important than it may seem
on the surface. Indeed, Cauchy’s formula provides us with a represen-
tation of f(2) through an integral which in its dependence on z has the
same character at the exceptional points as everywhere alse. It follows
that the exceptional poinis are such only by lack of informatien, and not
by their intrinsic nature. Points with this character are called removable
singularities. 'We shall prove the following precise theorem:

Theorem 7. Suppose that f(z) is analylic in the region @ oblained by
omiliing o point a from ¢ region Q. A necessary and sufficient eondilion
that there exist an analytic function in @ which coincides with f(2) in & s
that im (2 — a)f(z) = 0. The extended function is uniquely determined.

The necessity and the uniqueness are trivial since the extended fune-
tion must be continuous at a. To prove the sufficiency we draw a circle
€ about @ so that € and its inside are contained in €.  Cauchy’s formula
is valid, and we can write

f(2) = el P

for all z ¢ o inside of C. But the integral in the right-hand member
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represents sn analytic funetion of z throughout the inside of €. Conse-
quently, the function which is equal to f(z) for z # a and which has the
value

1 ¢ f)yds
@) rilct—a
for z = a is analytic in €. It is natural to denote the extended function
by f(2) and the value (27) by f{a).

We apply this result to the function
F’(z) iz f(zz.ﬂ:wm

T z—ua
used in the proof of Cauchy’s formula. It is not defined for z = a, but
it satisfies the condition Iim (z — @)F(z) = 0. The limit of F(z) as 2
2+

tends to a is f'(a). Hence there exists an analytic function which is
equal to F(z) for z # o and equal to (a) for 2z = a. Let us denote this
function by fi(z). Repeating the process we ean define an analytic func-
tion fi(z) which equals (fi(z) — fi(@))/(z — @) for z 3£ a and fi{a) for
z == a, and so on.
The recursive seheme by which f,{¢) is defined can be written in the

form

@) = fla) + (= — a)fu(2)

Ni@) = fila) + (z — a)fe(2)

..................

Jona(@) = facrla) + (& — a)fa(2).
From these equations which are trivially valid also for z = ¢ we obtain
f@) = fl@) + & — afile) + & — A)¥ald) + - - - + & — &) Yosla)
+ (2 — 6}, (2).
Differentiating » times and setling z = a we find
o @) = nlf.(a).

This determines the coefficients f,(z), and we obtain the following form
of Taylor's theorem:

Theorem 8. If f(z) is analytic in a region Q, containing a, it is possible
to write

2 = bt — fi('il — )2 PO
28) f2) = fla) + & —a) +75" (e — a)* +

+ 20— o 106 - o

where f,.(2) is analytic in Q.




126 COMPLEX ANALYSIS

This finite development must be well distinguished from the infinite
Taylor series which we will study later. It is, however, the finite develop-
ment (28) which is the most useful for the study of the local properties of
(). Its usefulness is enhanced by the fact that f,(z) has a simple explicit
expression as a line integral.

Using the same circle C as before we have first

_ 10k
& =5l t 2

For f.({} we substitute the expression obtained from (26). There will
be one main term containing f(¢). The remaining terms are, except for
constant factors, of the form

RO = formaemy

e 1 1
n =2 (s - )% -0

identically for all einside of C. By Lemma 3 we have F, 1 (a) = F{(a)/v!
and thus F.{(g) = Oforall» =z 1. Hence the expression for f.(2) reduees to

1 fQ@) dy
(29) Fald) = 5 fc T - ¢ -2

The representation is valid inside of C.

v
o

But

3.2. Zeros and Poles. 1f f(a) and all derivatives f0?{(a) vanish, we can
write by (28)
(30) @& = fal2)(z — &)

for any n. An estimate for f.(z) can be obtained by (29). The disk
with the cireumference € has to be contained in the region € in which
J(2) is defined and analytic. The absolute value |f(z)} has a maximum
M on C; if the radius of € is denoted by R, we find

M
f2)] = YR — [z — 4]

for |z — a| < R. By (28) we have thus

g - a\* MR
1f(2)i§( e )'Rm{zma|'

But {|z — a|/R)*— 0 for n— o, since [z — al < B. Hence f(z) = 0
inside of C.
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We show now that f(z) is identically zero in all of @.  Let E) be the
set on which f(2) and all derivatives vanigh and E; the set on which the
function or one of the derivatives is different from zero. E,is open by
the above reasoning, and E; is open because the function and all deriva-
tives are continuous. Therefore either Ey or E; must be empty. If B,
is empty, the function is identically zero. If E,is empty, f(z) can never
vanish together with all its derivatives.

Assume that f(z) is not identically zero. Then, if f(a) = 0, there
exists a first derivative f®(a) which is different from zero. We say then
that a is a zero of order h, and the result that we have just proved expresses
that there are no zeros of infinite order. In this respect an analytic
function has the same local behavior ag a polynomial, and just as in the
case of polynomials we find that it is possible to write f(z) = (z — a)*/i(2)
where fu.() is analytic and fi{a) £ O.

In the same situation, since fx(2) is continuous, fi(z) # 0ina neighbor-
hood of a and z = g is the only zero of f(z) in this neighborhood. In
other words, the zeros of an analytic function which does not vanish
identically are isolated. This property can also be formulated as a
uniqueness theorem: If f(2) and g(2) are analytic in Q, and if f(z) = g(2)
on a set which has an accumulation poini in Q, then f(2) ts identically
equal to g(2). The conclusion follows by consideration of the difference
@) — g(z).

Particular instances of this result which deserve to be quoted are the
following: If f(2) is identically zero in a subregion of Q, then it is identi-
cally zero in Q, and the same is true if f(z) vanishes on an arc which
does not reduce to a point. We can also say that an analytic function is
uniquely determined by its values on any set with an accumulation point
in the region of analyticity. This does not mean that we know of any
way in which the values of the function can be eomputed.

Wo consider now a function f(z) which is analytie in a neighborhood
of a. except perhaps at @ itself. In other words, f(z) shall be analytic in
a region 0 < |z — al < 5. The point a is called an isolated singularily
of f(z). We have already treated the case of a removable singularity.
Since we can then define f(a) so that f(z) becomes analytic in the disk
l¢ — al < &, it needs no further consideration.}

If lim f(z) = «, the point a is said to be a pole of f(z), and we set

- d /3

f(a) = . Thereexistsa 8’ < §such that f(2) > 0for0 < |z — a] < 3"
In this region the function g(z) = 1/f(z) is defined and analytic. But
the singularity of () at a is removable, and g(2) has an analytic exten-

If g is s removable singularity, f{z) is frequently said to be regudar at a; this
term is sometimes used as a synonym for anslytic,
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sion with g(a) = 0. Since g(z) does not vanish identically, the zero at
a has a finite order, and we can write g(2) = (z — a)hg.(2) with ga(a) = 0.
The number h is the order of the pole, and f(z) has the representation
() = (2 — ay"fi(2) where fu(z) = 1/gu(2) is analytic and different from
zero in a neighborhood of @. The nature of a pole is thus exactly the
same as in the case of & rational function.

A funetion f(2) which is analytic in a region €, except for poles, is said
to be meromorphic in . More precisely, to every ¢ € & there shall exist
a neighborhood |z — a| < §, contained in Q, such that either f() is ana-
lytic in the whole neighborhood, or else f(2) is analytic for 0 < |z — a| < 8,
and the isolated singularity is a pole. Observe that the poles of a mero-
morphic function are isolated by definition. The quotient f(2)/g(z) of
two analytie functions in @ is a meromorphic function in &, provided
that g(z) is not identically zero. The only possible poles are the zeros of
g(2), but a common zero of f(z) and g(z) can also be a removable singu-
larity. If this is the case, the value of the quotient must be determined
by continuity. More generally, the sum, the product, and the quotient
of two meromorphie functions are meromorphic. The ease of an identi-
cally vanishing denominator must be excluded, unless we wish to con-
sider the constant « as a meromorphie function.

For a more detailed diseussion of isolated singularities, we consider
the conditions (1) lim |z — al|f(2)| = 0, (2) lim |z — al®|f(2)| = @, for

- ol

real values of . If (1) holds for a certain e, then it holds for all larger ,
and hence for some integer m. Then (z — a)™f(2) has a removable singu-
larity and vanishes for z = ¢. Either f(2) is identically zero, inwhich
case (1) holds for all &, or (z — a)™f(2) has a zero of finite order k. In
the latter ease it follows at once that (1) holdsfor all e > b = —m — k,
while (2) holds for all @ < k. Assume now that (2) holds for some «;
then it holds for all smaller a, and hence for some integer n. The fune-
tion (z — a)*f(z) has a pole of finite order I, and setting h = n + [ we
find again that (1) holds for @ > h and (2) for @« < A. The discussion
shows that there are three possibilities: (i) condition (1) holds for all a,
and f(z) vanishes identically; (i) there exists an integer h such that (1)
holds for & > k and (2) for @ < h; (iii) neither (1) nor (2) holds for any «.

Case (i) is uninteresting. In case (ii) & may be called the algebraic
order of f(2) at a. It is positive in case of a pole, negative in case of a
zero, and zero if f(2) is analytie but # 0 at a. The remarkable thing is
that the order is always an integer; there is no single-valued analytic

function which tends to 0 or « like a fractional power of |z — al. )
In the case of & pole of order h, let us apply Theorem 8 to the analytic

function (z — a)*f(z). We obtain a development of the form

(e — aPf(2) = Bu+ Bus(z — @) + - -+ + Bz — a)* + o(@)(z — a)®
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where ¢(2) is analytic at z = a. Tor z # a we can divide by (z — a)®
and find

f@ = Bulz — &)™ + Bralz —a) ' 4+ « - -+ Bi(z — @) + o(2).

The part of this development which precedes ¢(2) is called the singular
part of f(z) at z = a. A pole has thus not only an order, but also a well-
defined singular part. The difference of two functions with the same
singular part is analytie at a.

In case (iii) the point ¢ is an essential isolated singulority. 1In
the neighborhood of an essential singularity f(2) is at the same time
unbounded and comes arbitrarily close to zero. As a characterization
of the complicated behavior of a funetion in the neighborhood of an essen-
tial singularity, we prove the following classical theorem of Welerstrass:

Theorem 9. An analytic function comes arbitrarily close to any complex
value in every neighborhood of an essential singularity.

If the assertion were not true, we could find & complex number 4 and
a & > 0 such that [f(z) — A| > § in a neighborhood of a (except for
z=g). For any a« <0 we have then lim |z — al*|f(z} — A| = w.

Hence ¢ would not be an essential singularity of f(z) — A. Accord-
ingly, there exists a 8 with lim 2 — alf|f(z) — 4| = 0, and we are free

to choose 8 > 0. Since in that case lim lz — alf|A! = 0 it would follow
that lim [z — alf|f(z}| = 0, and e would not be an essential singularity of

f(z). The contradiction proves the theorem.

The notion of isolated singularity applies also to functions which are
analytic in a neighborhood |z] > R of «. Since f(e) is not defined, we
treat « as an isolated singularity, and by convention it has the same
character of removable singularity, pole, or essential singularity as the
singularity of g(z) = f(1/2) at 2 = 0. If the singularity is nonessential,
f(z) has an algebraic order h such that lim z*f(z) is neither zero nor

Infinity, and for a pole the singular part is a polynomial in z. If o is
an essential singularity, the function has the property expressed by
Theorem 9 in every neighborhood of infinity.

EXERCISES

1. If f(z) and g(z) have the algebraic orders k and k at z = a, show
that fg has the order k + k, f/g the order h — k, and f -+ g an order which
does not exceed max (h,k).
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2, Show that a function which is analytic in the whole plane and has
a nonessential singularity at « reduces to a polynomial,

3. Show that the functions e7, sin z and cos z have essential singularities
at oo,

4, Show that any function which is meromorphie in the extended
plane is rational.

5. Show that an isolated singularity of f(z) cannot be a pole of
exp f(z). Deduee that an isolated singularity is removable as soon as
Re f(2) is bounded above or below.

3.3. The Local Mapping. We begin with the proof of a general for-
mula which enables us to determine the number of zeros of an analytic
function. We are considering a function f(z) which ig analytic in an
open disk A. Let v be a closed curve in A such that f(z) ¢ 0ony. For
the sake of simplicity we suppose first that J(2) has only a finite number
of zeros in A, and we agree to denote them by 23, 22, . . . , 2z, where each
zero 18 repeated as many times as its order indicates.

By repeated applications of Theorem 8, or rather its eonsequence (30),
it is clear that we can write f(z) = (¢ — 2@ —z) - (2 — 290
where g(z) is analytic and 5 0 in A. Forming the logarithmic derivative
we obtain

& _
flzy =

for z # 2, and particularly on 4. Since g(z) # 0in A, Cauchy’s theorem
yields

R SR S0

1 & - 2o 2 — Zn g(z)

G
o) =0
Recalling the definition of n(y,z) we find
B nlwe) ) o e = ok [ FE g

This is still true if f(z) has infinitely many zerosin A, It is clear that
¥ is contained in a concentric disk A’ smaller than A, Unless f(z) is
identically zero, a case which must obviously be excluded, it has only a
finite number of zeros in A’. This is an obvious eonsequence of the
Bolzano-Weierstrass theorem, for if there were infinitely many zeros
they would have an accumulation point in the closure of A’, and this is
impossible. We can now apply (31) to the disk A’. The zeros outside
of A’ satisfy n(v,z;) = 0 and hence do not contribute to the sum in (31).
We have thus proved:
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Theorem 10. Let z; be the zeros of e function f(z) which _is analylic tn
a circular disk A and does not vanish identically, each zero bfamg cou‘nted as
many limes as ils order indicates. For every closed curve v in A which does

not pass through o zero

RO
(32) Y ntra) = o [ o e,

2

where the sum has only e finite number of terms » (0,

The function w = f(z) maps ¥ onto a closed curve T in the w-plane,
and we find

[B_ (1@,
iy

w v flz)
The formula (32) has thus the following interpretation:
(33) n(T0) = Y niv,z).

H

The simplest and most useful application is to the case where it is
known beforehand that each n(y,2,) must be either 0 or 1. 'Then '(35%)
yields a formula for the total number of zeros enclosed by v. This is
evidently the case when v is a circle.

Let a be an arbitrary complex value, and apply Theorem 10 to f(2) —
a. The zeros of f(z) — a are the roots of the equation f(z) = a, and we
denote them by z{a). In the place of (32) we obtain the formula

i J(z)
2 n{v,z(a)) = S LW dz
i
and (33) takes the form
(@) = ¥ nly.z(@).
7
1t is necessary to assume that f(z) € a on ¥-
If @ and b are in the same region determined by T, we know that

n(l,a) = n(T'b), and hence we have also Y n(v,(a)) = ¥ nlr,z ().
E 7

If 4 is a circle, it follows that f(2) takes the values a and b equally many

times inside of y. The following theorem on local correspondernce is an

immediate consequence of this result.

Theorem 11. Suppose that f(2) s analytic of z, f(z(f} == g, and that
f(2) — we has a zere of order n at zo.  If & > 0 4s sufficiently small, there
exists a corresponding & > O such that for ail a with ja — w.g} < & the equg-
tion f(2) = a has exadily n rools in the disk |z — 2z} < 5.
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We can choose e so that f(z) is defined and analytic for |z — 2] < ¢
and so that z is the only zero of f(2) — wo in this disk. Let 7 be the
circle |z — 2o| = £ and T its image under the mapping w = f(z). Since
wy belongs to the complement of the closed set T, there exists a neighbor-
hood |w — wo] < & which does not intersect I' (Tig. 21). 1t follows
immediately that all values a in this neighborhood are taken the same
number of times inside of y. The equation f(z) = w, has exactly n
coinciding roots inside of v, and hence every value a is taken # times,
It is understood that multiple roots are counted aceording to their multi-
plicity, but if e is sufficiently small we can assert that all roots of the

equation f(z2) = @ are simple for a # we. Indeed, it is sufficient to 3

¢hoose ¢ so that f'(z) does not vanish for 0 < |z — 2| < &,

Corollary 1. A nonconstant analytic function maps open sets onto open
sets. ”

This ig merely another way of saying that the image of every suf-
ficiently small disk |z — zo| < ¢ containg a neighborhood lw — wy) < 8.
In the ease n = 1 there is one-to-one correspondence between the disk
[ — wol < & and an open subset A of |z — 2| < & Since open sets in
the z-plane correspond to open sets in the w-plane the inverse function
of f(2) is continuous, and the mapping is topological. The mapping can

be restricted to a neighborhood of 2z, contained in 4, and we are able to
state:

Corollary 2. If f(z) is analytic at zo with f'(z¢) = 0, it maps ¢ neighbor-
hood of 2o conformally and topologically onto a region.

From the continuity of the inverse function it follows in the usual way
that the inverse funetion is analytic, and henee the inverse mapping is

z-plane w-plane

FiG. .  Local correspondence.
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w-plane {~plane z-plane
FIG. 22. Branch point: s = 3.

likewise conformal. Conversely, if the local mapping is one to one,
Theorem 11 ean hold only with n = 1, and henee f'(zo) must be differ-
ent from zero. .
For n > 1 the loeal correspondence can still be described in very pre-
cise terms. Under the assumption of Theorem 11 we can write
f(2) — wo = (2 — 20)"g(2)
where g{z) is analytic at z, and g(zo) # 0. Choose e > 0 50 tha;t;
17(2) — g(zo)| < lg(zo)| for |z — 2] < & Inthis zle@hb()rh{zod it is possi-
ble to define a single-valued analytic branch of 4/g(z), which we denote
by k{z). We have thus
1) = wo = 2"
t(2) = (z — z0)h(2).
Since {(20) = h(zo) 3 0 the mapping { = {(2) is topological 'in a neigh-
borhood of z,.  On the other hand, the mapping « = wo + {" is of an ele-
mentary character and determines n equally spaced values g“for each
value of w. By performing the mapping in two steps we obtain a very
illuminating picture of the local correspondence. Figurfe 22 shows the
inverse image of a small circular disk and the n arcs which are mapped
onto the positive radius.

EXERCISES

1. Determine explicitly the largest disk about the origin whose image
under the mapping w = 2* -+ z is one to one.

2. Same problem for w = ¢~ .

3. Apply the representation f(z) = we 4 {(2)" to cos z with 2o = 0.
Determine t{z) explicitly. ‘

4. If f(z) is analytic at the origin and /() # 0, prove the existence of
an analytic g(2) such that f(z*) = f(0) + g(z)* in a neighborhood of 0.

3.4. The Maximum Principle. Corol ary 1 of Theorem 11 basi a very
important analytical consequence known as the maximum prineiple for
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analytic functions. Because of its simple and explieit formulation it is
one of the most useful general theorems in the theory of functions. Asa
rule all proofs based on the maximum principle are very straightforward,
and preference is quite Justly given to proofs of this kind.

Theorem 12.  (The mazimum principle.)  If f(z) 4s analytic and non-
constant in a region Q, then s absolute value | f(2)| has no maxéimum in Q.

The proof is clear. If w, = S(zo) 18 any value taken in Q, there exists
a neighborhood fw — w| < ¢ contained in the image of @ In this
neighborhood there are points of modulus > fwol, and hence |f(zo)] is not
the maximum of |1(z)].

In a positive formulation essentially the same theorem can be stated
in the form:

Theorem 12/, If f(z) is analytic on a closed bounded set E, then the
maximum of |f(2)| is taken on the boundary of E.

Since F is compact |f(z)] has a maximum on E. If f(2) is constant,
the assertion of the theorem is trivially true, for the boundary of % ig
not empty. Suppose that the maximum were taken at an interior point
zo. Then |f(z0)| would also be the maximum of |7(2)] in a neighborhood
iz = zo| < & contained in F. But this is impossible unless f(z) is con-
stant in this neighborhood, and then f(z) is constant throughout its
region of definition (we recall that f(z) is analytic on B if it is defined
and analytic in a region which contains E). Thus the maximum is
always taken at boundary point.

The maximum principle can also he proved analytically, as a conse-
quence of Cauchy’s integral formula. If the formula (22) is specialized
to the case where v is 2 circle of center z, and radius r, we can write

= 2o 1 7€%, d{ = ire?® d0 on v and obtain for z = 20

(34) f(zg) = mé%; Stz + 1) do.

This formula shows that the value of an analytic function at the center
of a circle is equal to the arithmetic mean of its values on the circle,
subject to the condition that the closed disk |z — 20| £ r is contained in
the region of analyticity.

From (34) we derive the inequality

(35) f(z)| = étr 7 1o 4 7o) ao.
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- ere o maximum. Then we would have | fi (zn’ + rei®}|
Silii)?éj;f};iilﬁzt%iztrict inequality held for a single value of 8 it lwou](i
]?:;Id by continuity, on a whole arc. But then the mean]dv? ued ;)‘_)
lf(zc’-l—— rei®)| would be strictly less than [f(zo)], and (35) wzu ’ ef: u;ﬂ
the contradiction |f{zo)] < f(ze)}. Thus £ musi be coéas g:n-g; ,?n !
to |f(z0)] on all sufficiently small c.rreles 2 =~ 2zl -«I &nat;cé t(;?; n o
neighborhood of z,. It follows easily that f(z) mu}\? redu; m,n con-
%taﬁt. This reasoning provides a second proof of the max?mh p el
N le. We have given preference to the first proof becalf.se it s ows t '
fheﬂ maximum principle is a consequence of the topological properties o
1 ing by an analytic function.
the %Z}ziz?ngio the formulation given in Theorem w1‘2" we ozze;}rve t'hit
the most natural application is to the case where E is a c}o t ll;egu;té
We find that a function which is analvytlc on a closed region ta e§t i>s
maximum on the boundary of the region. For some a.ppi;catmn; i -d
important to notice that the hypothesis of th{:j theorfam can be w}':aa ?ne d
Tt is indeed sufficient to suppose that f(2) is corlt{nu(.)us in the ciczgd
region and analytic in the open region. The con.tl.nulty on ; :ilc 0 !
and bounded region ensures the existence of a maximum, an!.j -t: ?JI;&(}
Iyticity in the open region implies that the maximum cannot be attam
at an interior point unless the function reduces_to a eonstar_}t.' .

Consider now the case of a function f(z) x_;v‘mch is analytic .;n't e open
disk |2| < R and continuous on the closed dislui 2| £ R. 1Hd1‘t ;:s llslfo:;:
that |f(z)| £ M on |z| = R, then [f(2)] £ M in ifhe Wh(') e disk, taym he
preceding remark. The equality can hold only if f{z) is a const: Jiu
ahsolute value M. Therefore, if it is known that f(z:) takes sori;ne value
of modulus < M, it may be expected that a better es‘?lmate efml e g:ver;f.
Theorems to this effect are very useful. The following particular result
iz known as the lemma of Schwarz:

1 Iyt tisfies the condilions
Theorem 13. If f(z) 4s analytic for |z| f 1 and sa ' ‘
IF@)| < 1,70) = 0, then |f(2)| £ {2l and | 0)] £ 1. Equality holds only
if f(2} = ez with a constant ¢ of absolule value 1.

We apply the maximum principle to the functier} J1{z) which is (13(%;1%1
to f(2)/z for z # 0 and to f’(0) for z = 0. On the circle EI = TL<tt‘ i 1§
of absolute value £ 1/r, and hence {f1(2)| & 1/r fqr ].zl < r. Letting '
tend to 1 we find that |fu(z)| = 1 for all £, and'thwi is the assertaQQ o
the theorem. If the equality holds at a single point, it means that |f ;{z)]
attaing its maximum and, hence, that fi(z) must redu(‘:e to a eonstant-_.al

The rather specialized assumptions of Theom@ lf& are not CEESS{;II ial,
but should be looked upon as the result of a normalization. For instance,
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if f(2) 18 known to satisfy the conditions of the theorem in a disk of radius
R, the original form of the theorem can be applied to the function f(Rz).
As aresult we obtain | f{R2)| = |zI, which can be rewritten as [f(2)| < |2l/R.
Similarly, if the upper bound of the modulus is M instead of 1, we apply
the theorem to f(z}/M or, in the more general case, to f(Rz)/M. The
resulting inequality is |f(z)| £ M|2l/R.

Still more generally, we may replace the condition f{(0) = 0 by an
arbitrary eondifion f(z;) = we where |2)] < Rand |wel < M. Leti = Tz
be a linear transformation which maps || < R onto {¢} < 1 with z; going
into the origin, and let Sw be a linear transformation with Swe = 0 which
maps lw] < M onto |Sw| < 1. It is clear that the function Sf(T-1{)
satisfies the hypothesis of the original theorem. Hence we obiain
ISH(T-10)] = 8], or |Sf&) = 1T2. Lxplicitly, this inequality can be
written in the form

M(f@) — w) | _ | Rz — 2)

(36) M — od) | = | R =2 |
EXERCISES
1. Show by use of (36), or direetly, that |f(z}] = 1for 2] = 1 implies
e .t
1 =1 =1 — |2
2. If f(2) is analytic and Im f(2) = 0 for Im 2 > 0, show that
() — f(za)l < lz — 2
@) — G| ~ e — 2l
and

M@l 1 o

3. In Ex. 1 and 2, prove that equality implies that f(2) is & linear
transformation.

4. Derive corresponding inequalities if f(z) maps |2l < 1 into the
upper half plane.

5. Prove by use of Schwarz’s lemma that every one-to-one conformal
mapping of & circular disk onto another (or a half plane) is given by alinear
transformation.

*6, If v is a piecewise differentiable arc contained in jz| < 1 the integral

|dz]
vl — |z}
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is called the noneuclidean length (or hyperbolic length) of v. Bhow that
an analytic function f(z) with |f(z)] < 1 for |z] < 1 maps every v on an
arc with smaller or equal noneuclidean length,

Deduce that a lirdar transformation of the unit disk onto itself pre-
serves noneuclidean lengths, and check the result by explicit computation.

*7. Prove that the arc of smallest noneuclidean length that joins two

given points in the unit disk is a circular are which is orthogonal to the unit
circle. {(Make use of a linear transformation that carries one end point
to the origin, the other to & point on the positive real axis.)

The shortest noneuclidean length is called the noneuclidean distence
between the end points.  Derive a formula for the noneuclidean distance
between z; and z,.  Answer:

&y - 2o

L b 1
2 & By — 28
1~ -

1—-2}22

*8. How should noneuclidean length in the upper half plane be defined?

4. THE GENERAL FORM OF CAUCHY’S THEOREM

In our preliminary treatment of Cauchy's theorem and the integral
formula we considered only the case of a eircular region. For the pur-
pose of studying the local properties of analytic functions this was quite
adequate, but from a more general point of view we cannot be satisfied
with a result which is so obviously inecomplete. The generalization can
proceed in two directions. For one thing we ecan seek to characterize
the regions in which Cauchy’s theorem has universal validity. Secondly,
we can consider an arbitrary region and look for the curves 4 for which
the assertion of Cauchy’s theorem is true.

4.1, Chains and Cycles. In the first place we must generalize the
notion of line integral. To this end we examine the equation

@7 [ gt [gaet[ st [ fa

Fidyrt o ya

W‘hich is valid when 7, 92, . . . , ¥, form a subdivision of the arc 7.
S.mce the right-hand member of (37) has a meaning for any finite eollec-
tion, nothing prevents us from congidering an arbitrary formal sum
Y1+ v2 4+ - -+ + 4, which need not be an arc, and we define the cor-
tesponding integral by means of equation (87). Such formal sums of
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arcs are called chains, Tt is elear that nothing is lost and much may be
gained by considering line integrals over arbitrary chains.

Just as there is nothing unique about the way in which an arc can be
subdivided, it is clear that different formal sums can represent the same
chain. The guiding principle is that two chains should be considered
identical if they yield the same line integrals for all functions f. If this
principle is analyzed, we find that the following operations do not change
the identity of a chain: (1) permutation of two ares, (2) subdivision of
an are, (3) fusion of subares to a single are, (4) reparametrization of an
are, {5) cancellation of opposite arcs. On this basis it would be easy to
formulate a logieal equivalence relation which defines the identity of
chains in a formal manner. Inasmuch as the situation does not involve
any logical pitfalls, we shall dispense with this formalization.

The sum of two chains is defined in the obvious way by juxtaposition.
It is clear that the additive property (37) of line integrals remains valid
for arbitrary chains. When identical chains are added, it is convenient
to denote the sum as a multiple. With this notation every chain ean be
written in the form

(38) T =yt ey 0 0 4 dava
where the g; are positive integers and the v; are all different.  For opposite
arcs we are allowed to write a(—+) = —avy and continue the reduction of

(38) until no two v; are opposite. The coefficients will be arbitrary
integers, and terms with zero coefficients can be added at will. The last
device enables us to express any two chains in terms of the same ares, and
their sum is obtained by adding corresponding coefficients. The zero
chain is either an empty sum or a sum with all coefficients equal to zero.

A chain is a cycle if it can be represented as a sum of closed curves.
Very simple combinatorial considerations show that a chain is a cycle if
and only if in any representation the initial and end points of the indi-
vidual ares are identical in pairs. Thus it is immediately possible to tell
whether a chain ig a ¢ycle or not.

In the applieations we shall consider ehains which are contained in a
given region @, By this we mean that the chains have a representation
By ares in © and that only such representations will be considered. It is
clear that all theorems which we have heretofore formulated only for
closed curves in a region are in fact valid for arbitrary cycles in a vegion.
In particular, the integral of an exact differential over any cycle is zero.

The index of a point with respect to a cycle is defined in exactly the
same way ag in the case of a single closed curve. It has the same proper-
ties, and in addition we can formulate the obvious but important additive
law expressed by the equation n{yy + v5,0) = ni{yy,a) + nlysa).
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4.2. Simple Connectivity. There is little doubt that all readers will
know what we mean if we speak abouf a region with(.)ut holes. Such
regions are said to be simply connected, and it is f(}r simply cozmecr:ed
regions that Cauchy’s theorem is universally valid. The SI.zggestlve
language we have used cannot take the place of a mathematical c‘:faﬁ-
nition, but fortunately very little is needed to make the term precise.
Indeed, a region without holes iz obviously one whose complement con-
gists of a single piece. We are thus led to the following definition:

Definition 1. A region is simply connected if ils complement with respect
o the extended plane is connecled.

At this point we warn the reader that this definition is not the one
that is commonly accepted, the main reason being that our definition
cannot be used in more than two real dimensions. In the course of our
work we shall find, however, that the property expressed by Definition 1 ig
equivalent to a number of other properties, more or less equally important.
One of these states that any closed curve can be contracted to a point, and
this condition is usually chosen as definition. Our choice has the advan-
tage of leading very quickly to the essential results in complex integration
theory. .

Tt is easy to see that a circular disk, a half plane, and a parallel strip
are simply connected. The last example shows the importance of taking
the complement with respect to the extended plane, for the complement
of the strip in the finite plane is evidently not connected. The definition
can be applied to regions on the Riemann sphere, and this is evidently
the most symmetric situation. For our purposes it is nevertheless bettt?r
to agree that all regions lie in the finite plane unless the contrary i
explicitly stated. According to this convention the outside of a f:ircie i
not simply connected, for its complement consists of a closed disk and
the point at infinity.

Theorem 14, A region Q is simply connected if and only if n(v,a) = 0
Jor all cycles v in @ and all points a which do not belong fo Q.

This alternative condition is also very suggestive. It states i;haf; a
closed curve in a simply connected region cannot wind around any peir}t
which does not belong to the region. It seems quite evident that this
condition is not fulfilled in the case of a region with a hole. )

The necessity of the condition is almost trivial. Let y be any cycle in
Q. If the complement of € ig connected, it must be contained in one of
the regions determined by 7, and inasmuch as « belongs to the comple-
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FIG, 23, Curve with index 1.

ment this must be the unbounded region. Consequently n{y,a} = 0 for

all finite points in the complement.

For the precise proof of the sufficiency an explicit construction is
needed. We assume that the complement of © can be represented as the |
union 4 \UJ B of two disjoint closed sets. One of these sets containg e, §
and the other is consequently bounded; let A be the bounded set. The
sets A and B have a shortest distance § > 0. Cover the whole plane
with a net of squares @ of side < §/4/2. We are free to choose the net
80 that a certain point a € 4 lies &t the center of a square. The boundary
curve of Q is denoted by 8Q; we assume explicitly that the squares @ J
are closed and that the interior of @ lies to the left of the directed line

segments which make up 90.
Cousider now the cycle

(39) ¥y = 2 b

"Where the sum ranges over all squares §; in the net which have a point ;;
in common with 4 (Fig. 28). Because ¢ is contained in one and only
one of these squares, it is evident that n(y,e) = 1. Furthermore, it is |
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clear that v does not meet B. But if the cancellations are carried out,
it is equally clear that v does not meet 4. Indeed, any side which meets
A is a common side of two squares included in the sum (39), and since
the directions are opposite the side does not appear in the reduced
expression of 4. Hence v is contained in @, and our theorem is proved.

We remark flow that Cauchy’s theorem is certainly not valid for
regions which are not simply connected. In fact, if there is a cycle vin
such that n(y,a) # 0 for some a outside of Q, then 1/(z — @) is analytic in
0 while its integral

&z .
L —=— = 2nin(y,a) # 0.

4.3. Exact Differentials in Simply Connected Regions. We will
now prove that Cauchy’s theorem holds in an arbitrary simply connected
region. In view of Theorem 1 we need only prove that f(z) dz is an exact
differential. This is known to be so when attention is restricted to a
circular disk contained in €. ‘Therefore, cur task is to prove that a
differential which is exact in a neighborhood of each point is also exact
in the whole region €, provided that € is simply connected. In this
form the statement is not limited to differentials of the form fde, and
we prefer to prove the following proposition:

Theorem 15. The differentiol p dx + g dy whose coefficients are defined
and continuous in a simply connected region Q is exact in Q if and only if

[0 2P dr +qdy =0
for every rectangle R contained in Q.
We choose a point z, € @ and define U(2) by

Ulz) = Lpd:c+qdy

where ¢ is a polygon from z, to z, contained in €, with sides parallel to
the axes. If we can show that U(z) is independent of the choice of o,
it follows in the same way as in the proof of Theorem 1 that 8U/dx = p,
aU /3y = ¢q. The difference ¥ = o1 — o2 of two polygons from 2z, to z is
a closed polygon in £ with vertical and horizontal sides, and we have to
show that the integral of p dx + ¢ dy over v is zero.

For the proof we use a rectangular net obtained by drawing lines
parallel to both axes through all the vertices of v (Fig. 24). There
will be some finite rectangles B; and some unbounded regions B which
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may assume that there is at least one finite rectangle R..

Choose a point @, from the interior of each R;, and form the cycle

(40) vo = 3 n{v,a) OR:

3

where the sum ranges over all finite rectangles; the coefficients n(y,a) |

are well determined, for no @; can Lie on y. In the discussion that fol-

lows we shall also make use of points @ chosen from the interior of each

R}, although they are not needed for the construction of vo.

The choice of v, defined by (40), is dictated by a definite pur-

pose. It is clear that n(8Ria) = 1 if k = { and 0 i k # {; similarly,
n(dR,q) = 0 for all 7. With this in mind we obtain from (40)

a(yoa) = n(v,a) and nly,a)) = 0. It is also true that n(y,q) = 0, _
for evidently the interior of R} must belong to the unbounded region }
determined by v. We have thus shown that n{y — ye,a) = 0 for all |

6 = g and a = af.
From this property of ¥ — v, we wish to conclude that v, is identical

with 4. Let o be the common side of two adjacent rectangles K, Ei; _

we choose the orientation so that A; les to the left of . Suppose that
the reduced expression of v — v, contains the multiple cos. Then the
eycle v — vo — ¢ OR: does not contain oy, and it follows that a; and
must have the same index with respect to this cycle. On the other hand,
the respective indices are evidently —¢ and 0; we conclude that ¢ = 0.

The same reasoning applies if ¢y, is the common side of a finite rectangle

may be considered as infinite rectangles, Inasmuch as we need not con-
sider the trivial case in which v lies on a vertical or horizontal line, we §
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R: and ap infinite rectangle B}, 1In the presence of at least one finite
rectangle it is clear that no two infinite rectangles can have a finite side
in common, and we have proved conclusively that v — vy, must be
identically zero. This means that v can be represented in the form

A
(41) v = ), n(v,a) OR:.
%

We prove now that the representation (41) is a representation in ;
more precisely, we show that the rectangles R: whoge corresponding
coefficient n(v,a;) is different from O are contained in @. This is a
consequence of the simple connectivity of . Indeed, suppose that a
point a in the closed rectangle R were not in ©. Then n(v,a) = 0, by
Theorem 14. On the other hand, the line segment between a and a; does
not intersect v, and hence n(y,a:) = n(y,a), contradicting the hypothesis

n(va:} # 0.
It follows that the hypothesis of Theorem 15 applies to each 3(R.)
which oceurs effeetively in (41). Consequently,

fvpdw'i—qdy =0,

and the theorem is proved. '
The most important consequence is Cauchy’s theorem for simply

connected regiong:
Theorem 16.  If f(2) is analytic in a simply connected region @, then
fT @ dz =0
Jor every cycle v in .
The following corollary is of frequent use:

Corollary. If f(2) is analytic and # O in a simply connected region @,
a single-valued analytic branch of log f(z) can be defined ¢n Q.

By the preceding theorem the function f'(2)/f(2) has an indefinite
integral F(z) in . The function f(2)e-7® has then the derivative 0
and must reduce to a constant, Choosing a point zy € & and an arbitrary
value of log f(z0) we find that

eF@—Fld+log 1) = f(z),

and eonsequently we can set log f(2) = F(2) — F(zo) -+ log f(z0).
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Under the same circumstances we can also determine a single-valued
branch of an arbitrary power f(2)* = ¢ploe /@,

4.4. Multiply Connected Regions. The proof of Theorem 15 includes
more than we have stated. As a matter of fact the hypothesis of simple
connectivity was used merely to conclude that n(y,a) = 0 for ali points
a not in €. For particular polygons this condition may well be fulfilled
even when the region € is not simply connected. In an arbitrary region
we have in effect proved that

Lpdx+qdy=0

for any closed polygon v which does not wind around any outside points,
and it is reasonable to expect that this result is not restricted to polygons.
However, the transition from a polygon with horizontal and vertical sides
to an arbitrary cycle must be based on a different argument, for we can
no longer be sure that the differential is exact.

Before we proceed with this proof it is convenient to introduce a name
for the type of cycles with which we shall be coneerned.

Definition 2. A cycle v in Q 45 said to be homologous to zero with respect
to @ if and only if niv,a) = 0 for all points a not in Q.

In symbols we write ¥ ~ 0 (mod Q). When it is clear to what region
we are referring, € need not be mentioned explicitly. The notation
71~ v: shall be equivalent t0 43 — v2 ~ 0. It is clear that homologies
can be added and subtracted. Moreover, ¥ ~ 0 (mod Q) implies v ~ 0
(mod &) for every € D Q.

Again, our terminology does not quite agree with standard practice.
It was E. Artin who discovered that the characterization of homology by
vanishing winding numbers ties in precisely with what is needed for
Cauchy’s theorem. This idea has led to a remarkable simplification of
earlier proofs.

Theorem 7. If p dz + ¢ dy s locally exact in Q, ie., if
(42) Lpd’a:-{-—gdyﬂo

for v = 3R, K being any rectangle confoined in R, then (42) holds for
every cycle «v which is homolegous to zero in Q.

For the proof it is sufficient to show that v can be replaced by a
polygon o with horizontal and vertical sides such that every locally exact
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differential has the same integral over o as over v. This property implies,
in particular, n(e,e) = n{v,qa), and hence ¢ ~ 0.. The pmc.}f_ of Theorem
15 applies to ¢, and we may conclude that v satisfies condition (42).

We construct ¢ as an approximation of v.  Let the distance from v to
the complement of © be Zp > 0. If the equation of v is z= z(1),
a = t < b, the function z({{) is uniformly continuous on the closed interval
(a,b). We determine § < 0 so that |2(t) — 2('}] < pfor |t -.t’l < & and
divide (a,b) in subintervals of length <& The correspon(%mg sub‘arcs
of v, which we denote by v;, have the property that each v is contained
in & disk of radius p which lies entirely in £. The end points of v, can
be joined within the same disk by a polygon e; consisting of a h.orizontal
and a vertical segment. Since our differential is exact in the disk,

L_pdx+qdy = prd:vﬁmdy,
and setting ¢ == Z 5; we obtain
];pdx +ody = fvpdx + g dy;

this completes the proof.

Theorem 17 characterizes the cycles which are homologous to zero.
We have proved, in effect, that if the integral over 4 vanishes for a}i
differentials of the special form dz/(z — @) with a outside @, then it
vanishes for all locally exact differentials.¥ In particular, it vanishes for
the differentials of the form f(2) dz where f(z) is analyticin €. This is the
final and most complete form of Cauchy’s theorem.

Theorem 18. If f(2) is analylic in Q. then
[ 1@ de=0
for every cycle v which is homologous to zero tn L.

A region which is not simply connected is called multi;?ly connected.
More precisely, @ is said to have the finite connectivity n if Fh‘e eo.mpi&
ment of Q@ has exactly n components and infinite conneemwt-y_ if the
complement has infinitely many components. In a less precise t_aut
more suggestive language, a region of connectivity n arises by punching
7 holes in the Riemann sphere.

In the case of finite connectivity, let 41, 4s, . . . , An be the com-
ponents of the complement of €, and assume that e belongs to 4.. 1f

¥ As in the hypothesis of Theorem 17 & differential is said to be locally exact in &
region §2 if it is exact in some neighborbood of each point in O,




Y, 146 COMPLEX ANALYSIS

7 18 an arbitrary cycle in @, we can prove, just as in Theorem 14, that
n(7y,a) is constant when a varies over any one of the components 4, and
that n(y,a) = 0 in A,.. Moreover, duplicating the construction used in
the proof of the same theorem we can find eycles v, 7 =1, . ., ,n —1,
such that n(y,a) = 1 for e e 4; and n(ysa) = 0 for all other points out-
side of Q.

For a given eycle v in @, let ¢; be the constant value of n{y,a) for
aed,. We find that any point outside of © has the index zero with
respecttothecycley — e1y) — egyg — + « » — €u1¥n-1. 1D other words,

Yo~ar vttt A Yoo

Every cycle is thus homologous to a linear combination of the cycles
Y Y2 -+« y Yoo This linear combination is uniquely determined, for
if two linear combinations were homologous to the same cyecle their
difference would be a linear combination which is homologous to zero.
But it is clear that the cycle ey + cxye + ¢+ Comryns winds o
times around the points in A;; hence it cannot be homologous to zero
unless all the ¢; vanish.

In view of these circumstances the cycles vy, v, . . ., Ya_y are said
to form a homology basis for the region €. It is not the only homology
basis, but by an elementary theorem in linear algebra we may conclude
that every homology basis has the same number of elements, We find
that every region with a finite homology basis has finite connectivity,
and the number of basis elements is one less than the connectivity.,

By Theorem 18 we obtain, for any analytic function f(z) in g,

/;fdz = gif?!fdz e cszfdz 4o Cnmfymfdz.
The numbers
Pi= [ fd

depend only on the function, and not on 1. They are called modules of
periodicity of the differential f dz, or, with less accuracy, the periods of
the indefinite integral. We have found that the integral of f(z) over any
cycle is a linear combination of the periods with integers as coefficients,
and the integral along an arc from z o 2 is determined up to additive
multiples of the periods. The vanishing of the periods is a necessary

and sufficient condition for the existence of a single-valued indefinite

integral.
In order to illustrate, let us consider the extremely simple case of an

annulus, defined by r1 < |2 < r;. The complement has the components 4

Izl = 7y and g = ry; we include the degenerate casesr; = Qand 7z = .

The annulus is doubly connected, and a homology basis is formed by |
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any circle {o] = r, 7y <v < re. If this circle is denoted by €, any cycle
in the annulus satisfies ¥ ~ nC where n = n(v,0). The ii.ltegral of an
analytic function over a cyele is a multiple of the single period

P=[7id
whese value is of course independent of the radius r.

EXERCISES

1. Prove that the region obtained from & simply connected region by
removing m points has the connectivity m -+ 1, and find a homology basis.

2. Bhow that the bounded regions determined by a closed curve are
simply connected, while the unbounded region is doubly connected.

3. Show that single-valued analytic branches of log 2, 2* and z* ean ‘be
defined in any simply connected region which does not contain the origin.
defined in any region such that the points -1 are in the same component
of the complement. What are the possible values of

_ bz

[\/I——z’

over a closed curve in the region?

5. THE CALCULUS OF RESIDUES )
The results of the preceding section have shown that the determination
of line integrals of analytic functions over closed curves can be §educed
to the determination of periods. Under certain cireumstances it t—zfrns
out that the periods can be found without or with very little cemp}}tataon.
We are thus in possession of a method which in many cases permai;s us o
evaluate integrals without resorting to explicit calculation. This is of
great value for practical purposes as well as for the further development
of the theory. .

In order to make this method more gystematic a simple formalism,
known as the calculus of residues, was introduced by Cauchy, the found(_ar
of complex integration theory. TFrom the point of view adopted in this
book the use of residues amounts essentially to an application of the
results proved in Sec. 4 under particularly simple circumstances.

5.1. The Residue Theorem. Our first task is fo review earlier results
n the light of the more general theorems of Sec. 4. Clearly, all resn‘lts
which were derived as consequences of Cauchy’s theorem for a disk
remain valid in arbitrary regions for all cycles which are homologous
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to zero. For instance, and this application is typical, Cauchy’s integral
formula can now be expressed in the following form:
If f(2) is analytic in a region Q, then

a(y,a)f(@ = % L{-m(?:—‘if

for every eycle v which 25 homologous to zero in .

The proof is a repetition of the proof of Theorem 6. In this con-
nection we point out that there is of course 10 longer any need to give
a separate proof of Theorem 16 in the presence of removable singularities.
TIndeed, our discussion of the local behavior has already shown that all
removable singularities can simply be ignored.

We turn now to the discussion of a function {(z) which is analyticina
region £ except for isolated singularities. Tor & first orientation, let us
assume that there are only a finite number of singular points, denoted by
ay, Qg -+ - 3 G The region obtained by excluding the points a; will be

denoted by €.
To each g; there exists a & > 0 such that the doubly connected region

0<lz—a] <bis contained in &, Draw a cirele C; about ¢; of radius

< &;, and let

(43) P = [ @ d
be the corresponding period of f(2). The particular function 1/(z — @;)
has the period 2wi. Therefore, if we set B; = P;/2wi, the combination

R;
z —

@~

has a vanishing period. The constant B, which produces this result is
called the residue of f(2) at the point ¢ We repeat the definition in the
following form:

Definition 3. The residue of f(z) ot an ssolated singularity a is the unique
complex number R which makes f(z) — B/(e — a) the derivative of a single-
valued analytic function tn an annulus 0 < |z — @] < &

Tt is helpful to use sach gelf-explanatory notations as B = ReSu.a =)
Let v be a cycle in ¢ which is homologous to zero with respect to {.
Then v satisfies the homology

v~ Y hr,o)C;

with respect to '; indeed, we can easily verify that the points ¢; a8 well
as all points outside of @ have the same order with respect to both cycles.
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By virtue of the homology we obtain, with the notation (43),
Lf dz = Z n(7,9)Fj
J

and since P; = 2r% - R; finally
1
5rs [ = D, nra) By
7
This is the residue theorem, except for the restrictive assumption that
there are only a finite number of gingularities. In the general case we
need only prove that n(y,a;) = 0 excepl for a finite number of points ¢;
for then the same proof can be applied. The assertion follows by ront,im;
reasoning. The set of all points a with n(y,a) = 0 is open and contains
all points outside of a large circle. The complement is consequently &
compact set, and as such it cannot contain more than a finite number of
the isolated points ¢, Therefore n{y,a) ¥ 0 only for a finite number of
the singularities, and we have proved:

Thf:orem 19. Let f(z) be analytic except for isolated singularities a; in @
region Q. Then

1
(49) o [ 1) de = ), () Res, 1)
¥
for any cycle v which is homologous lo zero in Q and does not pass through
any of the points a;.

In thg applications it is frequently the case that each n(y,s,) is either
Oor 1. Then we have simply

o [ 1) dz = ) Rosoma, (2

where the sum is extended over all singularities enclosed by v.

‘ The residue theorem is of little value unless we have at our disposal a
simple procedure to determine the residues. For essential singularities
thfere is no such procedure of any practical value, and thus it is not sur-
prising that the residue theorem is comparatively seldom used in the
presence of essential singularities. With respect to poles the situation is
entirely different. We need only look at the expansion

i@ = Bz — oy + - -+ Bale - @) + ()

to recognize that the residue equals the coefficient By Indeed, when the
term Bi(z — ay~! is omitted, the remsinder is evidertly a derivative.
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Since the principal part at a pole is always either given or can be eagily
found, we have thus a very simple method for finding the residues.

For simple poles the method is even more immediate, for then the
residue equals the value of the function (z — a)f(z) for z = a. For
instance, let it be required to find the residues of the function

e!

(z — )z — b)
at the poles @ and b # a. 'The residue at ¢ is obviously e/(a — b), and
the residue at b is ¢¢/(b — a). If b = ¢, the situation is slightly more
complicated. We must then expand e by Taylor’s theorem in the form
e = ¢ + ¢e*(z — a) ++ fol2)(z — a):. Dividing by (¢ — a)? we find that
the residue of &/(z ~ a)? at z = a is e~

Remaork. Tn presentations of Cauchy’s theorem, the integral formula
and the residue theorem which follow more classical lines, there is no
mention of homology, nor is the notion of index used explicitly. Instead,
the curve y to which the theorems are applied is supposed to form the
complete boundary of a subregion of @, and the orientation is chosen so
that the subregion lies to the left of Q. In rigorous texts considerable
effort is spent on proving that these intuitive notions have a precise
meaning. The main objection to this procedure is the necessity to allot
time and attention to rather delicate questions which are peripheral in
comparison with the main issues,

With the general point of view that we have adopted it is still possible,
and indeed quite easy, to isolate the classical case. All that is needed is
to accept the following definition:

Definition 4. A cycle v #s said lo bound the region © if and only if n(v,a)
18 defined and equal to 1 for all points a € Q and either undefined or equal to
zero for all points a not in 8.

If v bounds @, and if @ + « is contained in a larger rogion &, then it
is clear that v is homologous to zero with respect to €. The following
statements are therefore trivial consequences of Theorems 18 and 19:

If v bounds @ and f(2) is analytic on the set Q@ -+ v, then

Lf(z)dz-“—-ﬂ
‘ 1 fy d
{}df
f(Z)"""“QM" T?‘—z‘
Jorall ze .
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If #(2) is analytic on @ + v except for isclaled singularities in §, then

o [ 1) dz = Z Rosms; /(2)
where the sum ranges over the singularities a; € 8. ]

We observe that a cycle ¥ which bounds @ must contain the set
theoretic boundary of . Indeed, if # lies on the boundgry of Q, _then
every neighborhood of z contains points from £ and points not in €.
1f such a neighborhood were free from points of ¥, n(y,z) would be defined
and constant in the neighborhood. This contradicts the definition, and
hence every neighborhood of z; must meet «v; since v is closed, 2z, must
lie on 4. '

The converse of the preceding statement is not true, for a point on ¥y
may well have a neighborhood which does not meet £. Normally, one
would try to choose v so that it is identical with the boundary. of {3, but
for Cauchy’s theorem and related considerations this assumption is not
peeded.

5.2. The Argument Principle. Cauchy’s integral formula can be con-
sidered as a special case of the residue theorem. Indeed, the function
f(2)/(z — @) has a simple pole at 2 = a with the residue f(a), and when
we apply (44), the integral formula results. )

Another application of the residue theorem oceurred in the proof {_)f
Theorem 10 which served to determine the number of zeros of an analyutlc
function, For a zero of order k we can write f(z) = (z — ayfu(z), with
fi(a) ¢ 0, and obtain f'(z2) = h(z — a)* " Yul2) + (z — a)"f;:(z).’ Conge-
quently (2)/f(z) = h/(z — @) + [1(2)/fu(2), and we see i:h:?.t f /j: has 2
simple pole with the residue h. In the formula (32) this residue is
accounted for by a corresponding repetition of terms. .

We can now generalize Theorem 10 to the case of a meromt.)rphlc
function. If f has a pole of order h, we find by the same calenlation as
above, with ~h replacing b, that f'/f has the residue —bh. The follow-
ing theorem results: .

Theorem 20. If f(z) is meromorphic in @ with the zeros a; and the poles
by, then

(45) % 7%) de = 2 n{y,a;) — Z%(‘Y,bk)

for every eycle v which is homologous to zero in & and does not pass through
any of the zeros or poles.




152 COMPLEX ANALYSIS

It is understood that multiple zeros and poles have to be repeated as
many times as their order indicates; the sumg in (45 are finite.

Theorern 20 is usually referred to as the argument principle. The
name refers to the interpretation of the left~hand member of (45) as n(1,0)
where T' is the image cycle of v. If T lesin a di_s_;k whieh does not con-
tain the origin, then #(T,0) = 0. This observation is the basis for the
following corollary, known as Rouché's theorem.:

Corollary. Let v be homologous to zero in Q and such that w{v,2) 75 either
Oor 1 for any point z not on v.  Suppose that f(z) and g(2) are analytic in O
and satisfy the inequality |f(z) — ¢(2)| < f@)| on v. Then J(&) and g(2)
have the sume number of zeros enclosed by .

The assumption implies that f(z) and g(z) are zero-free on y. More-
over, they satisfy the inequality

-1
fa <1
on v. The values of F(2) = g(2)/f(¢) on v are thus contained in the
open disk of center 1 and radius 1. When Theorem 20 is applied to
F(z), we have thus n(I',0) = 0, and the assertion follows.

A typical application of Rouché’s theorem would be the following.
Suppose that we wish to find the number of zeros of a function & in
the disk || = R, Using Taylor’s theorem we can write

f@) = Pres(®) + 2.(2)

where P, is a polynomial of degrec » — 1. For & suitably ehosen n
it may happen that we can prove the inequality B fu(2)] < |Paa(2)} on
lz| = R. Then f(z) has the same number of zeros in 2| = R as P._1(2),
and this number can be determined by approximate solution of the poly-
nomial equation P,_(z) = 0.

Theorem 20 can be generalized in the following manner. If g(z) is

¥

analytic in ©, then g(le')J%;‘;"‘)2 has the residue hg(a) at a zero a of order h
and the residue —hg(a) at a pole. We obtain thus the formula

@) 5 [0S b = T nerado@) - Y nibigo0.
i &

E

"This result. is important for the study of the inverse function. With
the notations of Theorem 11 we know that the equation f(z) = w,
[w — wy] < & has n roots z;(w) in the disk |z — 20| < e If we apply
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(46) with ¢(2) = 2z, we obtain

\ 1 O]
(47) _Zl 5 = g f; Ty 2 e
i= 2z} == &
Torn = 1 the inverse function f~!(w) can thus be represented explicitly by
“““ 1 O
A = oy —w? %

Iz =20} ==

1If (46) is applied with g(z) = 2™, equation (47} is replaced by

\ 1 @

Y=gy [ gyogede

i=1 |z—z20] =¢
It is not difficult to show that the right-hand mermber represents an ana-
lytic funetion of w for |w — wo| < 8. Thus the power sums of the roots
2;(w) are single-valued analytic functions of w. But it is well know.n ths'zt
the elementary symmetric functions can be expressed as pqunomlals in
the power sums. Hence they are also analytic, and we find that the
zi(w) are the roots of a polynomial equation

2 4 ay(w)zmt A - - - gea(w)z + au(w) = 0

whose coeflicients are analytic funetions of w in lw — wd| < 8.

5.3. Evaluation of Definite Integrals. 'The caleulus of residues pro-
vides a very efficient toel for the evaluation of definite ir_ltegrals.;. _It is
particularly important when it is impossible to find the indefinite znf;e«
gral explicitly, but even if the ordinary methods of caleulus can be applied
the use of residues is frequently a laborsaving device. The faci.: that t,.he
caleulus of residues yields complex rather than real integrgls 18 no dis-
advantage, for clearly the evaluation of a complex integral is equivalent
to the evaluation of two definite integrals, )
There are, however, some serious limitations, and the method is far
from infallible. In the first place, the integrand must be closely con-
nected with some analytic function. This is not very serious, for usually
we are only required to integrate elementary functions, am‘% they can all
be extended te the complex domain. It is much more serious that. the
technique of complex integration applies only to closed curves, while a
real integral is always extended over an interval. A special d‘ewce m}lst
be used in order to reduce the problem to one which eoncerns mf;egratmn
over a closed curve. There are a number of ways in which this can be
accomplished, but they all apply under rather special circumstances.
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The technique can be learned at the hand of typical examples, but even
complele mastery does not guarantee suecess.
1. All integrals of the form

(48) fﬂzw E(cos 6, sin 8) do

where the integrand is a rational function of cos # and sin ¢ can be easily
evaluated by means of residues. Of course these integrals can also be
computed by explicit integration, but this technique is usually very
laborious. Il is very natural to make the substitution z = ¢* which
immediately transforms (48) into the line integral

. k! IV 1 1\ | d=
=i [ la(e+3)m(-- )] %

It remains only to determine the residues which correspond to the poles
of the integrand inside the unit circle.
As an example, let us compute

x de
fo @+ cos 8 a> 1.

This integral is not extended over (0,2x), but since cos § takes the same
values in the intervals (0,x) and (r,2x) is is clear that the integral from
0 to « is one-half of the integral from 0 to 2r. Taking this into account
we find that the integral equals

— [ dz
i 22 202 4+ 1
The denominator can be factored into (z — a)(z — 8) with

o= —a-+va — 1, B = —g — /6 — 1,

Evidently la| < 1, 6| > 1, and the residue at ¢ is 1/(@ — ). The value
of the integral is found to be =/4/a% — 1.
2. An integral of the form

[l B@de.

converges if and only if in the rational function E(x) the degree of the
denominator is at least two units higher than the degree of the numerator,
and if no pole lies on the real axis. The standard procedure is to inte-
grate the complex function R(z) over a closed curve consisting of a line
segment (—p,p) and the semicircle from p to —p in the upper half plane.
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If p is large enough this curve encloses all poles in the upper half plane,
and the corresponding integral is equal to 2x7 times the sum of the
residues in the upper half plane. As p— o« obvious estimates show that
the integral over the semicirele tends to 0, and we obtain

[ ° Rz) do = 2ni 2 Res R(z2).

w0

3. The same method can be applied to an integral of the form
(49) [ B@eda
whose real and imaginary parts determine the important integrals
(50) [ _1 E(x) cos x du, [ _Ww R(z) sin z dz.

Since |e*| = ev is bounded in the upper half plane, we can again con-
clude that the integral over the semicircle tends to zero, provided that
the rational function K(z) has a zero of at least order 2 at infinity. We
obtain

7 B@e=dz = 2i ) Res R()e-.

y>0

It is less obvious that the same result holds when R(z} has only a
simple zero at infinity. In this case it is not eonvenient to use semi-
circles. For ope thing, it is not so easy to estimate the integral over the
semicirele, and secondly, even if we were successful we would only have
proved that the integral

! B dz

over a symmetric interval has the desired limit for p— . In reality
we are of eourse required to prove that

f;‘ R(x)e dx

has a limit when X; and X tend independently to «. In the earlier
examples this question did not arise because the convergence of the inte-
gral was assured beforchand.

For the proof we integrate over the perimeter of a rectangle with the
vertices Xo, X2 + 1Y, — X1+ 1Y, — X, where ¥ > 0. As soon as X,
X and Y are sufficiently large, this rectangle contains all the poles in
the upper half plane. Under the hypothesis [¢R(z)} is bounded. Hence
the integral over the right vertical side is, except for a constant factor,
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less than

v _ dy I ¢ty
fﬂ —<X—2- Gwdy.

The last integral can be evaluated explicitly and is found to be < 1. 1
Hence the integral over the right vertical side is less than a constant 1§
times 1/X;, and a corresponding result is found for the left vertical J
side. The integral over the upper horizontal side is evidently less than
e ¥ (X, + X,)/Y multiplied with a constant. For fixed X;, X it tends |

to 0 as ¥ — «, and we conclude that

X: | i _ . i 1 1
% - ] <3 2)

>0 X2

where A denotes a constant. This inequality proves that

[ B@e=dz = 2ni Z Res R(z)e"

gl
under the sole condition that B(e) = 0.

In the discussion we have assumed, tacitly, that B(z) has no poles on
the real axis since otherwise the integral (49) has no meaning, How-
ever, one of the integrals (50) may well exist, namely, if B(z) has simple }
poles which coincide with zeros of sin z or cos 2. Let us suppose, for §
instance, that E(z) has a simple pole at z = 0. Then the second inte- §

gral (50) has a meaning and calls for evaluation.

We use the same method as before, but we use a path which avoids 1
the origin by following & small semicircle of radius & in the lower half §
plane (Fig. 25). It is easy to see that this closed curve encloses the poles
in the upper half plane, the pole at the origin, and no others, as soon as
X1, X3, ¥ are sufficiently large and § is sufficiently small. Suppose that
the residue at 0 iz B, so that we can write R(z)e* = B/z 4+ Ro(z) where 3

FiG. 25
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Ro(z) is analytic at the origin. The integral of the first term over the
senticirele is miB, while the integral of the second term tends to 0 with 3.
It is clear that we are led to the result

lim [+ fﬁ“’ R(z)éis ds = i [;ﬂ Res R(z)e* + 3B |-

The lmit on the left is ealled the Cauchy principal value of the integral;
it exists although the integral itself has no meaning. On the right-hand
gide we observe that one-half of the residue at 0 has been included; this
is as if one-half of the pole were counted as lying in the upper Lalf plane.

In the general case where several poles lie on the real axis we obtain

pr.v. f ° R(a)e da = 2ni E Res R(z)e® -+ i Z Res R(z)e™
Fdi] y=0
where the notations are self-explanatory. It is an essential hypothesis
that all the poles on the real axis be simple, and as before we must
assume that (e} = Q.
As the simplest example we have

w gl .
pr.vf e G =
—w 3

Separating the real and imaginary part we observe that the real part of
the equation is trivial by the fact that the integrand is odd. In the
imaginary part it is not necessary to take the principal value, and since
the integrand is even we find

fwsinxdm_ar
0z 2

We remark that integrals containing a factor cos® z or sin®  can be
evaluated by the same technique. Indeed, these factors can be written
as linear combinations of terms cos mz and sin mz, and the corresponding
integrals can be reduced to the form (49) by a change of variable:

[ __: Rxyem dz = % [ _: Fi4 (%) e dx.

4. The next category of integrals have the form
[ﬂ” 2*R(z) d=

where the exponent a is real and may be supposed to lie in the interval
0 < & < 1. For convergence R(z) must have a zero of at least order two
at « and at most & simple pole at the origin.
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The new feature is the fact that R(2)z= is not single-valued. This*

however, is just the circumstance which makes it possible to find the
integral from 0 to .

The simplest procedure is to start with the substitution z = #2 which
transforms the integral into

2 fu“’ PR () di.

For the function #2?* we may choose the branch whose argument les
between —7ra and 3ra; it is well defined and apalytic in the region
obtained by omitting the negative imaginary axis. As long as we avoid
the negative imaginary axis, we can apply the residue theorem to the fune-
tion 2%t1B(2%). We use a closed curve consisting of two line segments
along the positive and negative axis and two semicircles in the upper half
p.lanc, one very large and one very small (Fig. 26). Under our assump-
tions it is easy to show that the integrals over the semicircles tend to zero.
Hence the residue theorem yields the value of the integral

f“‘: 22*HIR(z2) dz = j;)” (2%t 4 (—2)2 ) R(22) d.

However, (—z)* = e?™z®, and the integral equals
(1 — g2rie) j;)“’ 22 H1R(22) dz.

Since the factor in front is # 0, we are finally able Lo determine the value
of the desired integral.

The evaluation calls for determination of the residues of 22*+1R(2?) in
the upper half plane. These are the same as the residues of 22R(z) in the
whole plane. For practical purposes it may be preferable not to use any

FiG. 26 F1G. 27
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preliminary substitution and integrate the function z2R(z) over the closed
curve shown in Fig. 27. We bave then to use the branch of z¢ whose
argument lies between 0 and 2re.  This method needs sore justification,
for it does not conform to the hypotheses of the residue theorem. The
justification is trivial,

5. As a final example we compute the special integral

f‘; log «in 6 d6.

Consider the function 1 — €%* = —2ie” sin z. From the representation
1 — e% = 1 — e%(cos 2% + 7 sin 2x), we find that this function is real
and negative only for # = nr, ¥ < 0. In the region obtained by omitling
these half lines the principal branch of log (1 — %) is hence single-
valued and analytic. 'We apply Cauchy’s theorem to the rectangle whose
vertices are 0, 7, # + 1Y, and iY; however, the points 0 and = have to be
avoided, and we do this by following small circular quadrants of radius 8.

Because of the periodicity the integrals over the vertical sides cancel
against cach other. The integral over the upper horizontal side tends to
0 as Y — «. Finally, the integrals over the quadrants can also be seen
to approach zero as § — 0. Indeed, since the imaginary part of the
logarithm is bounded we need consider only the real part. Bince ¢** has
the derivative 2¢ at the origin, we find that |1 — e%*|/|z} — 2 for z — 0.
Hence we need only show that & log & tends to 0 with 5. For the sake of
completeness we include a proof of this elementary fact. By studying
the derivative we find that the function t log (¢/1) is increasing for t £ e/e.
For 6 < ¢/¢ we have thus §log (¢/8) < e/e. If wechooses < 1 andletd
satisfy the additional condition 8 < e/[e log (1/¢)], we find that & log (1/5)
<2¢/e, and this proves that m §log (1/8) = 0.

The same proof applies near the vertex =, and we obtain
fo" log (—2ie* sin z) do = 0

If we choose log ¢ = iz, the imaginary part lics between Q and w.  There-
fore, in order to obtain the principal branch with an imaginary part
between —r and =, we must choose log (—7) = —ni/2. The equation
can now be written in the form

2
7 log 2 ——(%)i—]—-f(:hgsin :rda:—{-(?;)i =0,

and we find
f;log gin xdr = —rlog 2.
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EXERCISES

Evaluate the following integrals by the method of residues;

/2 dx
1. [ e
0 e+ smiz a>0.

f w__ tdr
o 27+ 6% ;13

% i

4 fom G%, a real,

5. fom ;;—c:ls_% dz, « real,

6. [o N %%%f ) a real.

[ Si“;kx dz, k> 0.

8. ﬁ]‘” (1 + 2% 2 log = du.

. [0“’ log (1 + 22) x‘ffa (0 < <9).

6. HARMONIC FUNCTIONS

Thereal and imaginary parts of an analytic function are conjugate harmonie
functions, Therefore, all theorems on analytic functions are also theorems
on pairs of conjugate harmonic functions. However, harmonic functions
are mmportant in their own right, and their trestment is not always
sirplified by the use of complex methods. This is particularly true when
the conjugate harmonic function is not single-valued.

We assemble in this section some facts about harmonic functions
that are intimately connected with Cauchy’s theorem. The more delicate
properties of harmonic functions are postponed to a later chapter.

6.1. Definition and Basic Properties. A real-valued function u(z) or
w(x,y), defined and single-valued in a region £, is said to be harmonic in
£, or a polential function, if it is continuous together with its partial
derivatives of the first two orders and satisfies Laplace’s equation

i R
(51) Ay = @ + a_yg = [,

W_e E'shall sec later that the regularity conditions ean be weakened, but
this is a point of relatively minor importance,
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The sum of two harmonie functions and a constani multiple of a
harmonic function are again harmonic; this is due to the linear character
of Laplace’s equation. The simplest harmonic functions are the linear
functions ax 4+ by. In polar coordinates (r,6) equation (51) takes the form

J du a2y
T&(T"gf“‘) +W = O.T
This shows that log r is a harmonic function and that any harmonic
function which depends only on r must be of the form alogr + 5. The

argument # is harmonic whenever it can be uniquely defined.
If » is harmonic in €, then

du . du
(62) fz) *"é“i—?«”é@
is analytic, for writing U/ = o V=— du we have
’ dx dy
U _dw _ _ o _ v
dr  8xt T dyt By
alv 8w _ B“V:
ay oexdy  ox

This, it should be remembered, is the most natural way of passing from
harmonic to analytic functions.
From (52) we pass to the differential

o du . du du
{h3) fdz-(%d:ﬂ—}-a—ydy)—}-z(_@dm_}.%dy)

In this expression the real part is the differential of u,

o du

If % has a conjugate harmonic function ¢, then the imaginary part can be
written as
ﬁ?

dy

du Ju
d'y == "-@dﬂl-i--é;:dy.

In general, however, there is no single-valued conjugate function, and in
these circumstances it is better not to use the notation do. Instead we
write

gy = — Mg g
du = aydx—l-axdy

1 This form cannot be used for » = 0.
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and call *du the conjugate differential of du. We have by (53)
(54) fdz = du + i *du,

By Cauchy’s theorem the integral of f dz vanishes along any cycle
which is homologous to zere in £. On the other hand, the integral of
the exact differential du vanishes along all cycles. It follows by (54) that

sy — [ _ O du,
(55) jT du_L oy 95 ¥ G du =0

for all eycles ¥ which are homelogous to zero in €.

The integral in (55) has an important interpretation which cannot be
left unmentioned. If v is a regular curve with the equation z = 2(f),
the direction of the tangent is determined by the angle o = arg 2'(1),
and we can write de = |dz| cos o, dy = |dz] sin «. The normal which
pomts to the right of the tangent has the direction 8 = o — /2, and
thus cos ¢ = — sin 3, sin @ = cos 8. The expression

du  du du .
%—%cosﬁ+@$n8

is a directional derivative of u, the right-hand normal derivative with
respect to the curve y.  We obtain *du = (du/an) |dz|, and (55) can be
written in the form

o
(56) 3 |dz| = 0.

This is the classical notation. Its main advantage is that du/an
actually represents a rate of change in the direction perpendicular to ¥
For instance, if v is the circle |¢| = r, described in the positive sense,
du/dn can be replaced by the partial derivative du/dr. It has the dis-
advantage that (56) is not expressed as an ordinary line integral, but as
an integral with respect to arc length. TFor this reason the classical
notation js less natural in connection with homology theory, and we
prefer to use the notation *du.

In a simply connected region the integral of *du vanishes over all
cycles, and u has a single-valued conjugate function v which is deter-
mined up to an additive constant. Tu the multiply connected case the
conjugate function has periods

ou
* = —_
.[ e du i On ldz;

corresponding to the cycles in a homology basis.
There is an important generalization of (55) which deals with a pair of
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harmonic functions, If u, and u» are harmonic in &, we claim that
® — ug *duy = 0
(57) ]; g *dug Uz "QUL

for every eyele v which is homologous to zero in Q. Aeccording o
Theorem 17, Sec. 4.4, it is sufficient to prove (57) for v = OR, where E is
a rectangle contained in £.  In E, u; and u, have single-valued conjugate
functions v1, v2 and we can write

w1 ¥*dus — e *dur = w1 dv: — us dor = wadvs + vy due — d{uws).

Here d(usrq) is an exact differential, and widvs + vidu. is the imaginary
part of
{ur + o) {duy 4 7 dog).

The last differential can be written in the form Fif; dz where Fi(z) and
fo(2) are analytic on B. The integral of Fif; dz vanishes by Cauchy’s
theorem, and so does therefore the integral of its imaginary part. We
conclude that (57) holds for v = aR, and we have proved:

Theorem 21, If uy and we are harmonic in a region Q, then
* _ % —_ 0

(57) [ *dus — o %y

for every cycle v which is homologous to zero in £

For u; = I, us = u the formula reduces to (55). In the classical
notation (57) would be written as

duy _ 0 g =
f_r (ulﬁ' — Ug f‘m) |dz} = 0.

6.2, The Mean-value Property. Let us apply Theorem 21 with
1y = log r and w; equal to a function u, harmonic in jz| < p. For @ we
must choose the punctured disk 0 < |z| < p, and for v we take the eycle
Cy — Cp where C; is a circle |2} = 7; < p described in the positive sense.
On a cirele 2| = r we have *du = r(du/d7) d0 and hence (57) yields

du du
log 71 ja ri g do — fc, w df = log rs fm ra g df — fc, w dé.
In other words, the expression

wdé — logr f rgr—udﬁ

|el =7 lzj=r
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is constant, and this is true even if v is only known to be harmonic in an
annulus. By (55) we find in the same way that

lzl=r

is constant in the case of an annulus and zero if % is harmonic in the
whole disk. Combining these resulis we obiain:

Theorem 22. The arithmetic mean of a harmonic JTunetion over concentric
circles |2| = r ¢s @ linear function of log r,

(58) ﬁl;_r fud(}:alogr—i—ﬁ,

lz| =1

and if u 4s harmonic tn o disk o = 0 and the arithmetic mean is constant.

In the latter case § = w(0), by continuity, and changing to a new
origin we find

(59) ulzo) = 2;«}; fn " w(ze - %) db.

1t 18 clear that (59) could also have been derived from the corre-
sponding formula for analytic functions, Sec. 3.4, (34). It leads directly
to the mazimum principle for harmonic functions:

Theorem 23. A nonconstant harmonic function has neither ¢ mazimum
nor a minimum in its region of definition. Consequently, the maxrimum
and the minimum on a closed bounded set E are taken on the boundary of E,

The proof is the same as for the maxireum prineiple of analytic fune-
tions and will not be repeated. It applies also to the minimum for the
reason that —w is harmonic together with w. In the case of analytic
functions the corresponding procedure would have been to apply ihe
maximum principle o0 1/f(z) which is illegitimate unless f(z) # 0.
Observe that the maximum principle for analytic functions follows
from the maximum principle for harmonic functions by applying the
latter to log |f(z)| which is harmonic when f(z) = 0.

EXERCISES

1. If u is harmonie and bounded in 0 < |¢} < p, show that the origin
is a removable singularity in the sense that u becomes harmenic in el <o
when %(0} is properly defined,

COMPLEX INTEGRATION 165

2. If u(z) is harmonic for 0 < |z| < pandlim, .q2u(z) = IEJ, prove that
u can be written in the form u(z) = «log {2} + ue(2) where a is a constant
and ug is harmonic in || < p.

3. Suppose that f{2) is analytic for r1 £ |¢| = rs, and set

M@) = max |1
for lz} = r(r1 = r £ r2). Show that
M) £ M(r)oM(r)*r=

where o = log (rz/r):log (ry/r) (Hadamard’s t-hree—circIe. t_haorem).
Discuss cases of equality, Hini: Apply the maximum prineiple to a
linear combination of log |f(2)| and log |2|.

6.3. Poisson’s Forrmula. The maximum principle has the following
iraportant consequence: If u(z) is harmonic on a closed bounded set E'J,
that is, if it is defined and harmonic in a region containing E, then .1‘5 is
unicuely determined by its values on the boundary of E. Indeed, if u:
and wuz are {wo harmonic functions with the same boundary values, then
w1 — g 38 harmonic with the boundary values 0. Using the maximum
and minimum principle we find that «, — we must be identically zero on E.

There arises the problem of finding « when its boundary values are
given. At this point we shall solve the problem only in the simplest case,
namely for a closed disk.

Formula (59) determines the value of « at the center of the disk. B'ut
this is all we need, for there exisis a linear transformation which carries
any point to the center. To be explicit, suppose that u(z) is harmonic in
the closed disk |z| < B. The linear transformation

R(Et + a)

2= 80 = B+ ar

maps |{] £ 1 onto lz] £ R with = 0 corresponding to z=a The
funetion %(S(1)) is harmonic in |¢| = 1, and by (59) we obtain

wlo) = o [ w(SE) dorgs.

1§1=1
From
_R{z—10)
= R® — az

we compute

.dr . 1 a _ 2 az ]
dergy = —i— = —%(z_a RT:a)dz‘(zﬂa+m— %) %
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On substituting B? = 23 th, : .
rewritton o g e coefficient of d6 in the last expression can be

2 4@ _ R
z—a z—a_“jz_a]z

or, equivalently, as

é(z+a+é+?)=Rez+a.

Z—a Z—4a 2 —

We obtain the two forms

1 f R = gt

(60 = [l -1

) u(a) o | Toap @i =g f Re:i’gu(z) de
le{=R

of Poisson’s formula. In polar coordinates,

wlrete) = l Zr R — 2

ZrJo B — %R cos (§ — ¢) + 72 w(Re') de.

dik In the derivation we have assumed that u(2) is harmonic in the elosed
isk. Howcvez:, t%ua result remains true under the weaker condition that
u(z)} is harmonic in the open disk and continuous in the closed disk

Indeed, if ¢ < : st .
ohtis r < 1, then u(r2) is harmonic in the closed disk, and we

' — la:

1
ulra) = oy f x u(rz) de.

leImR |Z — al-’z

NO? all we need to do. is to let r tend t0 1. Because u(2) 18 uniformiy

continuous on |z| < R it is true that u(rz) — u(2) uniformiy for |2l = R

and we conclude that (60) remains valid. B
We shall formulate the result as g theorem :

1

Theorem 24. . .
el B Then Suppose that u(z) is harmonic for o < R, continuous for

61 = 1 R — |g|?
( ) u(a)‘-"g;uj;g'i?i““!ﬁ—glu(z)dﬂ
for dll |a| < R,

The theorem leads at once to an explici i
_ ; xplicit expression for th, i
function of . Indeed, formula (60) gives o conngate

(62) u() = Re [E} 20 ,d?f]

7 _
NESS Sl
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The bracketed expression is an analytic function of z for fz| < B. Tt

_ follows that u(z) is the real part of

(©3) 10 =55 | S0 +ic
l1=R

where C is an arbitrary real constant. This formula is known as Schwarz’s

formula.
As a special case of (61), note that w = 1 yields

2 — |2
(©4) [ a0
el =R

for all |o} < R.

6.4. Schwarz’s Theorem. Theorem 24 serves to express a given
harmonie funetion through its values on a circle. But the right-hand
side of formula (61) has a meaning as soon as u is defined on |z| = R,
provided it is sufficiently regular, for instance piecewise continuous.
As in (62) the integral can again be written as the real part of an analytic
function, and consequently it is a harmonic function. The question is,
does it have the boundary values u(z) on {z| = RY?

There is reason to clarify the notations. Choosing E = 1 we define,
for any piccewise continuous function U(f) in 0 = 6§ = 2r,

1 r2r, €%+ 2
Py(e) = 5= o Re e [7(6) ds
and call this the Poisson integral of U. Observe that Py(2) is not only a
funetion of 2, but also a function of the function U; as such it is called a
functional, The functional is linear inasmuch as

Pyyv = Py + Py

and
PcU = CPU

for constant ¢. Moreover, U = 0 implies Py(z) Z 0; because of this
property P is said to be a posifive linear funetional.

We deduce from (64) that P. = ¢. From this property, together
with the linear and positive character of the functional, it follows that any
inequality m £ U £ M implicsm £ Py = M.

The question of boundary values is settled by the following funda-
mental theorem that was first proved by H. A. Schwarz:




168 COMPLEX ANALYSIS

Theorem 25. The function Py(2) s harmonic for J2| < 1, and
(65) lin Py(e) = U(6)

z—raiffy

provided that U s continuous al 0.

We have already remarked that Py is harmonic. To study the
boundary behavior, let C; and C: be complementary arcs of the unit
circle, and denote by U, the funclion which coincides with 7 on Oy and
vanishes on C,, by U, the corresponding function for Cs Clearly,
Py = P.{:, +Pu,,.

Sinee Py, ean be regarded as a line integral over C; it is, by the same
reasoning as before, harmonic everywhere except on the closed are ¢y
The expression

Recf"—l—-z 1 — 22

e — 7 |ei9 — zig

vanishes on |2| = 1 for z # ¢®. It follows that Py, is zero on the open
arc (s, and since 1t 1s continuous lim,. . Py,(2) = 0 for ¢ € Cs.

In proving (65) we may suppose that U7/(8,) = 0, for if this is not the
case we need only rveplace U7 by U7 — U(8;). Given e > 0 we can find
and (¢ such that ¢'% is an interior peint of Cz and |U(6)] < ¢/2 forei € Cs.
Under this condition |Uy(6)] < ¢/2 for all 4, and hence [Py, (2)| < /2
for all {z| < 1. On the other hand, since Iy is continuous and vanishes
at e there exists a § such that [Py, (2)| < /2 for jz¢ — el < 5. It
follows that |Py{z)} £ |Pv,| + |Py,| < = as soon as [z| < 1 and |z — &%
< &, which is precisely what we had to prove.

There is an interesting geometric interpretation of Poisson’s formula,
also due to Schwarz. Given a fixed 2 inside the unit circle we determine
for each ¢ the point ¢!** which is such that ¥, z and ¢%* are in a straight

e

FlG. 28
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line (Fig. 28). It is clear geometrically, or by simple calculation, that
(66) L — |z} = |ei® — 2} e — 2].
But the ratio (¢ — 2)/(e¥* — 2) is negative, so we must have

1 — k2 = — (e — 2)(e¥0" — E).

We regard 8% as a function of § and differentiate. Bince z is constant we

obtain _
eiﬂ de _ f?ﬂw* dﬁ*

ef —z e —3

and, on taking absolute values,

ag*
@0 -

¢ — z

Tt follows by (66) and (67) that

1—lof? _ de*
[ef — 22 = do
and hence

1 = 1 2r _
Pu(z) = 5 [T o) agr = 5 fo U(6%) db.

In other words, to find Py(z), replace each value of U(¢) by the value at
the point opposite to z, and take the average over the circle.

EXERCISES

L Assume that U(%) is piecewisc continuous and bounded for all real

£. Show that
1 e Y .
= = e (8} d
PU(z) ﬂf—w (.’LT . E)g + yg (i) E

represents a harmonic function in the upper half plane with boundary
values U(2) at points of continuity (Poisson’s integral for the.haif plane).

2. Prove that a function which is harmonie and bounded in the upper
half plane, continuous on the real axis, can be represented as a Poisson
integral (Ex. 1).

Remark. The point at o presents an added difficulty, for we cannot
immediately apply the maximum and minimuam principle to uw — P
A good try would be to apply the maximum principle to 4 — Pu — ey for
e > 0, with the idea of letting e tend to 0. This alrost works, for the
function rendsg to 0 for y— 0 and to — o fory — o=, but we laek controt
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when {z} — . Show that the reasoning can be carried out successfully
by application to u — P, — ¢ Im (\/%2).
3. In Ex. 1, assume that {7 has a jump at 0, for instance U(4-0) = 0,

U(—0) = 1. Show that Py{z) —s:arg z tends to 0 as 2 — 0. Gen-

eralize to arbitrary jurops and to the case of the circle.

4. If €1 and C, are complementary arcs on the unit circle, set U = 1
onCy, U = 0on Cy. ¥ind Pr(z) explicitly and show that 2rPi(2) equals
the length of the are, opposite to Cy, cut off by the straight lines through
z and the end points of .

5. Bhow that the mean-value formula (59) remains valid for
u = log [1 + 2}, 20 = 0, 7 = 1, and use this fact to compute

ﬂ) i log sin 6 d6.

6.5. The Reflection Principle. An elementary aspect of the symmetry
principle, or reflection principle, has been discussed already in connection
with linear transformations (Chap. 3, See. 3.3). There are many more
general variants first formulated by . A. Schwarz. ’

The principle of reflection is based on the observation that if u(z) is
a harmonic function, then u(2) is likewise harmonie, and if f(2) is an analy-
tic function, then f(2) is also analytic. More precisely, if u(z) is harmonic
and f(z) analytic in a region then u(2) is harmonic and (@ analytic as
functions of zin the region 2* obtained by reflection @ in the real axis; thai
is, z€ 0% if and only if 2e 2. The proofs of these statements consist in
trivial verifications.

Consider the case of a symmetric region: ©* = Q. Because € is
connected it must intersect the real axis along at least one open interval,
Assume now that f(2) is analytic in © and real on at least one interval of
the real axis. Since f(2) — f(2) is analytic and vanishes on an interval it
must be identically zero, and we conclude that f(z) = J(Z) in ©. With
the notation f = u 4 @ we have thus u(z) = u(2), v(2) = —u(Z).

This is important, but it is a rather weak result, for we are asswning
that f(2) is already known to be analytic in all of 2. Let us denote the
intersection of © with the upper half plane by @+, and the intersection of @
with the real axis by ¢. Suppose that f(2) is defined on @+ \U ¢, analytic
in §F, continuous and real on . Under these conditions we want to show
that f(z) is the restriction lo Q" of a funetion which is analytic in all of @
and satisfies the symmetry condition f(z) = f(Z). Tn other words, part
of our theorem asserts that f(2) has an analytic continuation to Q.

Even in this formulation the assumptions are too strong. Indeed,
the main thing is that the imaginary part v(2) vanishes on a, and nothing
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at all need to be assamed about the real part.  In the definitive statemer}t
of the reflection principle the emphasis should therefore be on harmonic

functions.

Theorem 26. Let @F be the part in the upper half plane of o symmetric
region ©, and let o be the part of the real axis in Q. Suppose that oz} is
confinuous in O \J @, harmonic in O, and zero on . ffhtm v has o har-
monic extension to © which satisfies the symmeiry relatzo_n v(8) = —v(z_).
In the same sttuation, if v 45 the imaginary part of an enalytic ftﬂtwn f(z) in
Qt, then f(2) has an analytic extension which safisfies f(z) = f@).

For the proof we construct the function V(2) which is egual to #(2)
in @F, 0 on g, and equal to —v(Z) in the mirror image of Q*. We_have. to
ghow that ¥ is harmonic on ¢. For a point zyee consxdcl.‘ a disk W.lth
center xz, contained in €, and let Py denote the Poisson mteg}'a,l with
respect to this disk formed with the boundary values V. - The difference
¥ — Pyisharmonicin the upper half of the disk. It vanishes on the half
cirele, by Theorem 25, and also on the diameter, because V tcn_ds to zero
by definition and Py vanishes by obvious symmetry. The maximum and
minimum principle implies that ¥ = Py in the upper half disk, and th'e
same proof can be repeated for the lower half. We conclude that V is
harmonic in the whole disk, and in particular at xo. - .

For the remaining part of the theorem, let us again consu_icr a disk
with center on o. We have already exiended » 1o the Whole_dlsk, and »
has a conjugate harmonic function —u, in the same disl.c which we may
normalize so that uo = Re f{z) in the upper half. Consider

Ua(2) = uolz) — wal2).
On the real diameter it is clear that 8U,/9z = 0 and also

Uy _ g8 o0 _ ¢

dy By B
It follows that the analytic function 8Uo/dx — ¢ 8U//8y vanishes on t}}e
real axis, and hence identically. Therefore U, is a constant, and this
constant is evidently zero. We have proved that we(2) = we(Z). .

The construction can be repeated for arbitrary disks. It is clear
that the u, coincide in overlapping disks. The definition can be extended
to all of &, and the theorem follows. .

The theorem has obvious generalizations. The domam_ £ ean be
taken to be symmetric with respect to a circle C rather than with respect
to a straight line, and when z tends to C it may be assumed thatlf(.?)l
approaches another circle ¢, Under such conditions f(z) has an analytic
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cont.i}']uat.ion which maps symmetric points with respect to (' onte sym-
metrie points with respect to (V.

EXERCISES

L If f(z) is analytic in the whole plane and real on the real axis,
purely imaginary on the imaginary axis, show that f(z) is odd.

2, Bhow that every function f which is analytic in a symmetric region
Q can be written in the form f; + if; where fy, fo are analytic in @ and
real on the real axis,

3. If f(2) is analytic in [z} < 1 and satisfies |f| = 1 on |2 = 1, show
that f(e) is rational,

4, Use (63) to derive a formula for f(z) in terms of u(z).

5. If u(z) isharmenic and 0 £ w(z) £ Kyfory > 0, prove that u = ky
with 0 = k£ = K. [Reflect over the real axis, ecomplete to an analytic
function f(z) = u + i, and use Ex. 4 to show that f(z) is bounded.]

5 SERIES AND
PRODUCT DEVELOPMENTS

Very general theorems have their natural place in the theory of
analytic functions, but it must also be kept in mind that the whole
theory originated from a desire to be able to manipulate explicit
analytic expressions. Such expressions take the form of infinite
series, infinite products, and other limits. In this chapter we
deal partly with the rules that govern such limits, partly with
quite explicit representations of elementary transcendental fune-
tions and other specific functions.

1, POWER SERIES EXPANSIONS

In a preliminary way we have considered power seriesin Chap. 2,
mainly for the purpose of defining the exponential and trigono-
metric functions. Without use of integration we were not able
to prove that every analytic function has a power series expan-
sion. This question will now be resolved in the affirmative,
essentially as an application of Cauchy’s theorem.

The first subsection deals with more general properties of
sequences of analytic functions,

1.1. Weierstrass’s Theorem. The central theorem concerning the
convergence of analytic functions asserts that the limit of
a uniformly convergent sequence of analytic functions is an
analytic function. The precise assumptions must be carefully

stated, and they should not be too restrictive.
1713
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We are considering a sequence {f,(2)} where each f.(2) is defined and
analytic in & region @,. The limit function f(z) must also be considered
in some region £, and clearly, if f(z) is to be defined in ©, each point of ©
must belong to all @, for n greater than a certain ny. In the general
case 7o will not be the same for all points of ©, and for this reason it would
not make sense to require that the convergence be uniform in ©. In fact,
in the most typical case the regions @, form an increasing sequence, @1 C
QC - - C& C - - - ,andQis the union of the @,. In these circum-
stances no single function f,(2) is defined in all of ; yet the limit f(z) may
exist at all points of @, although the convergence cannot be uniform.

As a very simple example take f.(2) = /(22" + 1) and let Q, be the
disk |z} < 2-¥~. It is practically evident that lim f.(z) = z in the disk

|z} < 1 which we choose as our region €. In order to study the uni-
formity of the convergence we form the difference
fulz) — 2 = =227/ (2" + 1).

For any given value of z we can make |z*] < /4 by taking n >
log (4/5)/log (1/|2)). If <1 we have then 2|z|*t! < e¢/2 and
[1 4 22%] > 1 so that |f.(2) — 2| < e. Tt follows that the convergence
is uniform in any closed disk |2| £ r < 1, or on any subset of such a closed
disk.

With another formulation, in the preceding example the sequence
[fa(2}} tends to the limit function f{z) uniformly on every compact sub-
set of the region Q. In fact, on a compact set |2] has a maximum r < 1
and the set is thus contained in the closed disk lz| < r. This is the
typical situation. We shall find that we can frequently prove uniform
convergence on every compact subset of @; on the other hand, this is the
natural condition in the theorem that we are going to prove.

Theorvem Y. Suppose that f.(z) is analytic in the region Q,, and that the
sequence | f,(2)} converges to a timil funcltion f(2) in a region Q, uniformly on
every compact subset of Q. Then f(2) is analytic in Q. Moreover, fi(z)
converges uniformly to f'{2) on every compact subset of Q.

The analyticity of f(z) follows most easily hy use of Morera’s theorem
(Chap. 4, SBec. 2.3). Let |z — o) = r be a closed disk contained in Q;

the assumption implies that this disk lies in @, for all n greater than a
certain no.f 1f ¥ is any closed curve contained in |2 — af < 7, we have

Lf,,.(z) dz = 0

t In fact, the regions 9, form an open covering of |z — e} £ . The disk is com-
pact and henee has a finite subcovering.  This means that it is contained in a fixed Qn,.
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for n > no, by Cauchy’s theorem. Because of the uniform convergence
on ¥ we obtain

[ 1@ @z = lim [ 5.2)dz =0,

and by Morera’s theorem it follows that f(2) is analytic in |z — a] < r.
Consequently f(2) is analytic in the whole region Q.
An alternative and more explicit proof is based on the integral formula

Lo fa8) dE
2mle t — 2z

falz) =

where (' is the circle | — a] = r and |z — a|] < 7. Letting n tend to «
we obtain by uniform convergence

16 = g [, 25

2w

and thiz formula shows that f(z) is analytic in the disk. Starting from
the formula

P | Ja(8) dt
fn(z) - % o (;— . z)ﬂ

the same reasoning ylelds

gy = JO & _ o
lim @) = o o =@
and simple estimates show that the convergence is uniform for lz — qf
< p < r. Any compact subset of £ can be covered by a finite number
of such closed disks, and therefore the convergence is uniform on every
compact subset. The theorem is proved, and by repeated applications
it follows that f#'(z} converges uniformly to f*(z) on every compact
subsaet of Q.

Theorem 1 is due to Welerstrass, in an equivalent formulation. Its
application to series whose terms are analytic functions is particularly
important. The theorem can then be expressed as follows:

If a series with enalylic terms,

&= +REH+ -+l + -0,

converges uniformly on every compact subset of a region Q, then the sum f(z)
is analytic in O, and the series can be differentiated term by term.

The task of proving uniform convergence on a compact point set A
can be facilitated by use of the maximum principle. In fact, with the
notations of Theorem 1, the difference |fa(z) — fa(2)| attains its maxi-
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mum in A on the boundary of A. For this reason uniform convergence
on the boundary of A implies uniform convergence on A. For instance,
if the functions f.(z} are analytic in the disk |} < 1, and if it can be
shown that the sequence converges uniformly on each circle 2| = ru
where lin 7, = 1, then Weierstrass’s theorem applies and we can con-

m— oo

clude that the limit function is analytic.
The following theorem is due to A. Hurwitz:

Theorem 2. If the functions f.(z) are enolytic and # 0 in a region
and if f.(z) converges to f(2)}, uniformly on every compact subsel af Q, then
1(2) s either identically zero or mever equal to zero in Q.

Suppose that f(2) is not identically zero. The zeros of f(z) are in any
case isolated. For any point z € © there is therefore a number r > 0 such
that f(z) is defined and #0 for 0 < |¢ — zo| < r. In particular, |f(2)]|
has a positive minimum on the cirele [z — zo| = r, which we denote by C.
Tt follows that 1//,.(z) converges uniformly to 1/f(z) on C. Since it is also
true that f1(z) — f'(2), uniformly on €, we may conclude that

1 @, . 1 1 1®

o Gmilet e T il

But the integrals on the left are all zero, for they give the number of roots
of the equation f.(z) = 0 inside of C. 'The integral on the right is there-
fore zero, and consequently f{z) # 0 by the same interpretation of the
integral. Since z; was arbitrary, the theorem follows.

EXERCISES
1. Using Taylor's theorem applied to a branch of log (1 + z/n),

prove that
lim (1 + —z) = ¢
P~ n

uniformly on all compact sets.
2, Show that the series

(@ =Y ne

n=1

converges for Re z > 1, and represent its derivative in series form.
3. Prove that
(1 _ 21——-:);(2) = 1= — 2« 4- 8= —

and that the latter series represents an analytic function for Re z > 0.
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4. As g genera&ization of Theorem 2, prove that if the f.(2) have at
most m zeros in , then f(z) is either identically zero or has at most m zeros
5. Prove that a

nzlli—zn?" = nzl (1 fﬂzn)z

for |2 < 1. (Develop in a double series and reverse the order of
summation.)

1.2. The Ta;y.-lor Series. We show now that every analytic function can
be developed in a convergent Taylor series. This is an almost immediate
consequence of the finite Taylor development given in Chap. 4, Sec. 3.1

Theo_rem 8, together with the corresponding representatio;l of tht‘;
remainder term. According to this theorem, if f(2) is analytic in a region
{ containing z,, we ean write

1@ = fe) + T8 e = zg 4 - - 410G

" + Lo — 2
1 1) &

Zrile [ — 2T = 2)

for{a) =

In the last formula C is any circle |2 — 2| = p such that the closed disk
lz — 2] £ p is contained in Q.

. If M denotes the maximum of [f(z)| on C, we obtain at once the
estimate
M‘Z —_ z0|u+l

Vors(@}(z — 2| < e — Tz — af

We conclude that the remainder term tends uniformly to zero in every
disk |2 — zo)| £ r < p. On the other hand, p can be chosen arbitrarily
close ego the shortest distanee from zo to the boundary of . We have
proved:

Theorem 3. 1If f(z) is analytic in the region Q, containing z, then the

representation

560 = 1) + T e — g LD ey

18 valid in the largest open disk of center zo contained in Q.



iT8 COMPLEX ANALYSIS

The radius of convergence of the Taylor series is thus at least equal to
the shortest distance from 2o to the boundary of @ It may well be
larger, but if it is there is no guarantee that the series still represents f{z) at
all points which are simultaneousty in @ and in the circle of convergence.

We recall that the developments

zﬂ

2
ezi1+z+g._!+...+n!+...

R P
cosz-l-z,—!+ﬂ—-

; 28 2 7
Slnz—z—:‘))““!"i‘g'i—;‘:'!—l" .

served as definitions of the functions they represent. Of course, as we
have remarked before, every convergent power series 18 its own Taylor
series. We gave earlier a direct proof that power series can be differ-
entinted term by term. This is also a direct consequence of Welerstrass's
theorem.

1f we want to represent a fractional power of zorlogz through a power
series, we must first of a1l choose a well-defined branch, and secondly we
have to choose & center zg # (1. It amounts to the same thing if we
develop the function (1 + zrorlog (1 + z) about the origin, choosing the
branch which is respectively equal to 1 or 0 at the origin. Since this
branch is single-valued and analytic in |z] < 1, the radius of convergence
is at least 1. It is elementary to compute the coeflicients, and we obtain

(1+Z)“=1+p.z+(;)z2+---—i—(::)z”—k--
2 3 4 B
log(1+z)=z—%+%—-%+%—-

where the binomial coefficients are defined by

(ﬁ) PR N ottt iR

n "9 -~ n

If the logarithmic series had & radius of convergence greater than 1,
then log (1 4 2} would be bounded for jz| < 1. Since this is not the
case, the radius of convergence st be exactly 1. Similarly, if the
hinomial series were convergent in a circle of radius >1, the function
(1 + 2)* and all its derivatives would be bounded in lz] < 1. Unless
is a positive integer, one of the derivatives will be & negative power of
1 + 2, and hence unbounded. Thus the radius of convergence is pre-
cisely 1 exeept in the trivial case in which the binomial series reduces tO
a polynomial.
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The series developments of the cyclometric functions arc tan z and
arc sin z are most easily obtained by consideration of the derived series.
From the expansion

1
e = 1 . a2 4 — zﬁ P
1 4 22 24z +
we obtain by integration
P A
sretanz = =g+ =7 T

where the branch is uniguely determined as

¢ MF de
are tan £ = QT-}—.EE

for any path inside the unit cirele. For justification we ean either rely

on uniform convergence or apply Theorem 1. The radiug of convergence

cannot be greater than that of the derived series, and hence it iz exactly 1.
If 4/1 — 22 is the branch with a positive real part, we have

1-3-5

1-3
—— =1+‘12:22+:?m124+ﬁ_62&+ A

for |z} < 1, and through integration we obtain

3 . 5 . .5 et
The series represents the principal branch of are sin z with a real part
between —=/2 and /2. _

For combinations of elementary functions it is mostly not possible to
find & general law for the coefficients. In order to find the first few
coefficients we need not, however, caleulate the successive derivatives.
There are simple techniques which allow us to compute, with a reasonable
amount of labor, all the coefficients that we are likely to need.

Tt is convenient to introduce the notation [z*] for any funetion which is
analytic and has a zero of at least order » at the origin; less precisely,
[#7] denotes a function which “contains the factor o7 With this notation
any function which is analytic at the origin can be written in the form

f(Z) = g + a.z + - -+ a.z" 4 [zn-i—l],

where the coefficients are uniquely determined and equal to the Taylor
coefficients of f(z). Thus, in order to find the first 7 coefficients of the
Taylor expansion, it is sufficient to determine & polynomial P.(2) such
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that f(z) — P.(2) has a zero of at least order n + 1 at the origin. The
degree of P,(2) does not matter; it is true in any case that the coefficients
of 27, m £ m, are the Taylor coefficients of f(z).

For instance, suppose that

fley=ao+awe+aett+ - +aen+ - - -
g(z) = bo+ bz + bez® + + - - F b+ - - -

With an abbreviated notation we write
1@ = Pud) + [ g = Qule) + [¢+1)

It is then clear that f(2)g(2) = P.(2)@.(z) 4 (2", and the coefficients
of the terms of degree <n in P,Q, are the Taylor coeflicients of the prod-
uct f(z)g(z). Explicitly we obtain

f(z)g(z) = agby + (aohh + Cl]bo)z + - - -
+ (a()bﬂ + a[bﬁ__1 + L + anbu)zn _|_ P

In deriving this expansion we have not even mentioned the question of
convergence, but since the development is identical with the Taylor
development of f(z)g(z), it follows by Theorem 3 that the radius of con-
vergence is at least equal to the smaller of the radii of econvergence of
the given series f(2) and g{z). In the practical computation of P,Q, it is
of course not necessary to determine the terms of degree higher than n.

In the case of a quotient f(2)/g(z) the same method can be applied,
provided that g(0) = by # 0. By use of ordinary long division, con-
tinued until the remainder contains the factor 2"+, we can determine a
polynomial R, such that P, = Q.R, + [z**"]. Then f — R.g = [2n"1],
and since g(0) # 0 we find that f/g = B, 4+ [z*']. The coeflicients of
R, are the Taylor coefficients of f(z}/g(z). They ecun be determined
explicitly in determinant form, but the expressions are too complicated
to be of essential help.

I 1s also important that we know how to form the development of a
composite function f{g(z)). In this case, if g(z) is developed around z,
the expansion of f(w) must be in powers of w — g(ze). To simplify, let
us assume that zp = 0 and g(0) = 0. We can then set

fw)=a+aw+ - +auw+ -

and g(z) = bz + bz + - - - + b2+ - - - Using the same nota-
lions as before we write f(w) = P.(w) + [ and g(z) = Qu(z) + [2**Y]
with €,(0) = 0. Bubstituting w = g(z) we have to observe that

Po(Q. + [z71) = Pu(Qu(2)) + [*+

SERIES ANDP PRODUCT DEVELOPMENTS 181

and that any expression of the form {w"*!] becomes a lz"*'}. Thus we
obtain f(g(@)) = Pa(Q.(z)) + [z**Y), and the Taylor coefficients of f(g(z})
are the coefficients of P(@).(2)) for powers = n.

Finally, we must be able to expand the inverse function of an analytie
function w = g(z). Here we may suppose that g(0) = 0, and we are
looking for the branch of the inverse function z = g~!(w) which is ana-
Iytic in a neighborhood of the origin and vanishes for w = 0. For the
existenee of the inverse funetion it is necessary and sufficient that
g' (@ # 0; hence we assume that

9(2) = ez +ax* + - - - = Qulz) + [e"]]
with a1 # 0. Qur problem is to determine a polynomial P,(w) such that
Pa(@a.(2)) = 2z + [z**Y]. In fact, under the assumption a, # 0 the nota-
tions [27+1] and [w"+1] are interchangeable, and fromz = P,(Qu(2)) + [2*+]
we obtain z = P.(g(z) + [2°t1]) + [2"*Y] = Pa(w) + [w**. Hence P.(w)
determines the coefficients of g~ (w).

In order to prove the existence of a polynomial P, we proceed by
induetion. Clearly, we can take Py(w) = w/a:. If P..,is given, we set
P, = P, + bywm and obtain

Pu(@u(2)) = Pral@u(2)) + bueiz® + ]
= P, 1(Qus(2) + a.2} + buafz" + [z+1]
= Poa(Qu-1(2)} + Pr_(Qus(2))a.z" + buafz + [z~

In the last member the first two terms form a known polynomial of the
form z + c.2* + [2**Y, and we have only to take b, = —e.ar™.

For practical purposes the development of the inverse function is
found by successive substitutions. To illustrate the method we deter-
mine the expansion of tan w from the series

28 25
=gretanz = 2 — & S e e ek
v 3+5

If we want the development to include fifth powers, we write
3 ]
z=w+%~-%+[27]

and substitute this expression in the terms to the right. With appro-
priate remainders we obtain

i 2 I | S1\E 7
='w+éw“+%w2z3—éw5+[w7]

€

i 2
= w+%w3+%w2(w + [w®])® “"éwﬁ + [ = w +§w3+ L;)ws + ['107]--
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Thus the development of tan w begins with the terms
tan w = +lw3+£ 54 -
I Tl T :

EXERCISES

1. Develop 1/(1 + z%) in powers of 2 — g, a being a real number.
Find the general coefficient and for a = 1 reduce to simplest form.

2, The Legendre polynomials are defined as the coefficients F.la)in
the development

(1 — 20z + 2% = 1 + Pi(a)z + Pala)e® + - -

Find Py, P», Py, and P,.
3. Develop log (sin z/z) in powers of z up to the term 25,
4. What is the coefficient of 27 in the Taylor development of tan 2?
5. The Fibonacei numbers are defined by ¢, = 0,6 =1,

Cun = Cpy + Cy_3.

Show that the ¢, are Taylor coefficients of a rational funetion, and deter-
mine a clesed expression for ¢,

1.3. The Laurent Series, A series of the form
(43)] bu+b1z_1+522"2+"‘+bn2””+"‘

can be considered as an ordinary power series in the variable 1/2. Tt
will therefore converge outside of some circle |2} = R, except in the
extreme ease il = o; the convergence is uniform in every region jz| = p
>R, and hence the series represents an analytic function in the region
l2i > R. If the scries (1) is combined with an ordinary power series,
we get a more general series of the form

e
@ E 2™,

o —

It will be termed convergent only if the parts consisting of nonnegative
powers and negative powers are separately convergent. Since the first
part converges in a disk |2| < R» and the second series in a region |z] > R,
there is a common region of convergence only if By < R,, and (2) repre-
sents an analytic function in the annulus By < j2| < R,.

Conversely, we may start from an analytic function f(z) whose region
of definition contains an annulus Ry < |2| < Ry, or more generally an
annulus By < |z — al < R, We shall show that such a function can
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always be developed in a general power series of the form

4w
f(&) = E Az — ay

The proof is extremely simple. All we have to show is that f(z) can
be written as a sum f1(2) + f2(2) where f1(2} is analytie f-or |z - a < R,
and f2(2) is analytic for |z — a| > R with a remo‘fable smguls?nty at oo,
TInder these circumstances f;(2) can be developed in nonnegative powers
of z — a, and f3(z} ean be developed in nonnegative powers of 1/(z - a}.

To find the representation f(z) = fi(z) + fu(2) define f1(z) by

A ) &

2 -z
L e = ¢

fiz) =

for |z — a| < r < Ry and fa(2) by

1 d
e =g [ O

[t —a]=r

for By <r < |z — al. Inbothintegrals the value of 7 is irrelevant as long
a5 the inequality is fulfilled, for it is an immediate consequence of
Cauchy’s theorem that the value of the integral does not change with 7
provided that the circle does not pass over the point z. For t;hls_reasqn
f1(2) and fa(2) are uniquely defined and represent analytic funetions 1’11
lz — a| < Ry and |z — a| > Ri respectively. Moreover, by Cauchy’s
integral theorem f(z) = fi(2) + fa(2).
The Taylor development of f1(2) is

fi(z) = i Az — @)

n=0

with

@ A, 1 f fyde

= g v T
W O e

In order to find the development of fi(2) we perf.m'm the "transformﬂtion
{=a+ 1/, 2=a+1/7. This transformation carries {{ —a| =7
into j¢'] = 1/r with negative orientation, and by simple calculations we
obtain

7 L
z . ¢ =,
r

1
+ Sy -
1y _ L J&md~=23w
fola + T 9 ¢ ?
Ig

M=
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with
1
f(a + 5 )d
1 ¢ 1
Bo=go [~ — =g [ 100G - omras.
17 ;s_; It —a|=r

This formula shows that we can write

o
&= 3 Afz—ar

=

where 2all the coefficients A, are determined by (3). Observe that the
integral in (3) is independent of r as long as By, < v < R,.

If Ry = 0 the point a is an isolated singularity and A_, = B, is the
residue at g, for f(z) — A_.(z — a)~ ! is the derivative of a single-valued
function in 0 < |z — a| < R..

EXERCISES

1. Prove that the Laurent development. is unique.

2. Let @ be a doubly connected region whose complement. consists of
the components Ei, E;. Prove that every analytic function f(2) in © can
be written in the form fi(z) 4 f.(2) where fi(2) is analytic outside of E,
and f2(2) 1s analytic outside of E5.  (The precise proof requires & construe-
tion like the one in Chap. 4, Sec. 4.2.)

3. The expression

(o L@ _ §(f”(Z))”

e 2\

is called the Schwarzian derivative of f. If f has a multiple zero or pole,
find the leading term in the Laurent development of {fz]. Answer: If
f@)=alz— 29"+ - - -, then {f2} =2l —mM(e —z0) 2 & - - - .

4. Show that the Laurent development of (¢ — 1)~ at the origin is
of the form

1 1 v B
; — 2 + El (_l)k—-l (—ﬁﬁji zzk—l

where the nmumbers By, known as the Bernoulli numbers, are all positive.
Calculate B], Bg, B;;.

5. Express the Taylor development of tan z and the Laurent develop-
ment of cot z in terms of the Bernoull numbers.
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2. PARTIAL FRACTIONS AND FACTORIZATION

A rational function has two standard representations, one by partial
fractions and the other by factorization of the numerator and the denomi-
nator. The present section is devoted fo similar representations of
arbitrary meromorphic functions.

2.1. Partial Fractions. If the function f(2) is meromorphic in a region
¢, there corresponds to each pole b, a singular part of f(z) consisting of
the part of the Laurent development which contains the negative powers
of # — b,; it reduces to a polynomial P.(1/(z — &,)). Ii iz tempting to
subtract all singular parts in order to obtain a representation

@ 50 =3 b (25) + o

where g(z) would be analytic in €. However, the sum on the righi-hand
side 1s in general infinite, and there is no guarantee that the series will
converge. Nevertheless, there are many cases in which the series con-
verges, and what is more, it is frequently possible to determine g{z)
explicitly from general considerations. In such cases the result is very
rewarding; we obtain a simple expansion which is likely to be very helpful.

If the series in (4) does not converge, the method needs to be modified.
It is clear that nothing essential is lost if we subiract an analytic funciion
p.(z) from each singular part P,. By judicious choice of the functions p,

the series Z (P, — p,) can be made convergent. It is even possible to

take the p,(z) to be polynomials.

We shall not. prove the most general theorem to this effect. In the
case where @ is the whole plane we shall, however, prove that every
meromorphic function has a development in partial fractions and, more-
over, that the singular parts can be described arbitrarily, The theorem
and its generalization to arbitrary regions are due to Mittag-Leffler.

Theorem 4. Let {b,} be a sequence of complex numbers with im b, = e,

and let P (£} be polynomials without constant term.  Then there are functions
which are meromorphic tn the whole plane with poles of the points b, and the
corresponding singular parts P,(1/(z — b.)). DMoreover, the mosl general
meromorphic function of this kind can be wrillen in the form

) 10 =3 P.(;25) ~ 2] + o
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where the p,(2} are suttably chosen fized polynomials and ¢(z) 7s analytic in
the whole plane.

Bince the function P.(1/(z — b)) is analytic for fz] < 18], it can he
expanded in & Taylor serics about the origin.t We choose for p{2) a
partial sum of this series, ending, say, with the term of degree n,. The
difference P, — p, can be estimated by use of the explicit expression for
the remainder given in Chap. 4, Sec. 3.1. If [P, £ M, for |z) < [b.]/2,

we obtain, for instance,
. 1 ‘ 4{2I 1

for |z] < [b,|/4. Because of this estimate it is clear that the series in the
right-hand member of (5) ean be made convergent by choosing the 7,

large enough. Specifically, using the formula for the radius of conver-
gence we find that the power series

Z M, (-?f)n.,ﬂ

13

converges in the whole plane if lim My /lb,| = 0; this is assured by
choosing, for instance, n, > log 21,
Consider an arbitrary elosed disk el £ R, The seriesz (P, — p.)

has only a finite number of terms which become infinite in l2| £ R, and
from a certain term on the inequality (6) will hold throughout the disk,
If the terms with b = R are omitted, it follows that the remaining series
converges absolutely and uniformly in |2| £ B, Since B is arbitrary, the
series converges for all 2 b, and represents a meromorphic function in
the whole plane. It is obvious that the singular parts are P.(1/(z — b)),
and the rest of the theorem follows trivially.

As afirst example we consider the f unction #%/sin? 7z which has double
poles at the points z = n for integral n. The singular part at the origin is
1/2% and since sin®r(z — n) = sin®wz the singular part at 2z = » is
1/(z — n)2.  The series

-
Q) !

(2 — n)?
n= a0

is convergent for z = 7, 85 seen by ecomparison with the familiar series

Z 1/n2 Ttis uniformly convergent on any compact set after omission of
)

t We suppose, for simplicity, that no &, equals zero.
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he terms which become infinite on the set. For this reason we can write
the te d

-+ 2
1
= e e ()
®) sin? xz n;z_w (e — n)?
here g(z) is analytic in the whole plane. We contend that g(z) is
W o
ident’ﬂ;f Efoffzr?l.lis we observe that the function #2/sin? xz and the series (7)

both periodic with the period 1. Therefore the function g(z)‘]has the
a::r:ne period. For z = z + @y we have (Chap. 2, Sec. 3.2, Ex. 4)

jsin mef? = cosh? y — cos? x

and hence 7/sin? rz tends uniformly to 0 as |y| — wI . dBljlt 1&2; f::i et:

that the function (7) has the rame pr?p(?rt.y. ndeed, t ,h 5
o is uniform for ly| = 1, say, and the Limit for {y| — « can thus be
o 1kd by taking the limit in each term. We conclude that g(2) tenc%s
Db‘_tﬂlﬂe] { 0 for |yl-— «. This is sufficient to infer that E‘g(z-)|' is
umfogmdyin Oa period strip 0 < o = 1, and because of the periodicity
E?:)IT \i’ill be bounded in the whole plane. B\ I:muwlllle’s the;ore:nl Xézl
mustf reduce to a constant, and sinee the limit 18 0 the constan

vanish. We have thus proved the identity

) snfrz | L (z—n)*

From this equation a related identity can be obtained}{l)ytlntegrarilzlz)}l]l(;
The left-hand member is the derivative of —= cqt 2, .and ‘;1 e erms ;) h the
right are derivatives of —1/(z — n). The series with t e get;czr;e erm
1/{z — n) diverges, and a partial sum of the‘ Taylor senz,s mu e b s
tracted from all the terms with n # 0._ As it happens it is su
subtract the constant terms, for the series

Z(z—ln—i_%):nZoﬁ_;é—n-)

=0

i ith S rgent. The convergence 18
18 comparable w1th2 1/n? and hence converg
1

. . ich
uniform on every compact set, provided that we omit the terms whic

ise di iation i issible,
become infinite. For this reason termwise differentiation is permssible,

and we obtain

1 v 1
(10) wcotvrz=;+2(z_—;{+n)




is88 COMPLEX ANALYSIS

except for an additive constant. If the terms corresponding to n and o
are bracketed together, (10) can be written in the equivalent forms :

w0

1 _l_I_Z 2z
z.—.ﬂi’— T __ 5
ne—m ' # ﬂ:lz n

With this way of writing it becomes evident that both members of s
equation are odd functions of 2, and for this reason the integration .
stant must vanish. The equations (10) and (11) are thus correctid

.M

(11 wcot wz = lim

(12) fim i = Z I)n —
m 1

m—s o

which evidently represents a meromorphic function.
to separate the odd and even terms and write

It is very natu .

e

k41 & [

(=D» _ 1 1
—dEn* TP nZ-kz_zn ﬂ,=2k 12—1*2“

By comparison with (11) we find that the limit is

#oomz_w a(z—1)
2(:0t}2 2COt 5 -—“é""i“n"-;z!

and we have proved that

(13)

hm Z (—1)"

sin Tz

EXERCISES

1. Comparing coeflicients in the Laurent developments of cot a2 and-
of its expression as & sum of partial fractions, find the values of '

R
i

Give a complete justification of the steps that are needed.
2. Express

1
) #

in closed form.
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3. Use (13) to find the partial fraction development of 1/cos =z, and
show that it leads ton/4 =1 -3 41 —2 4 - - -,
4. What is the value of

ml ?
_Z» (z + n}* 4+ a¥

2.2, Infinite Products. An infinite product of complex numbers

(14) P2 Pe- = Il pa

n=1
is evaluated by taking thelimit of the partial products P, = pipz * * - Pa-
It is said to converge to the value P = lm P, if this imit exists and is

different from zero. There are good reasons for excluding the value zero.
For one thing, if the value P = 0 were permitted, any infinite product
with one factor 0 would converge, and the convergence would not depend
on the whole sequence of factors. On the other hand, in certain con-
nections this convention is too radieal. In fact, we wish to express a
function as an infinite product, and this must be possible even if the
function has zeros. For this reason we make the following agreement:
The infinite product (14} is said to converge if and only if at most a
finite number of the factors are zero, and if the partial produets formed
by the nonvanishing factors tend to a finite limit which is different from
Z€ro.

In a convergent product the general factor p, tends to 1; this is clear
by writing p, = P./P..., the zero factors being omitted. In view of
this fact it is preferable to write all infinite products in the form

(15) II @ +ad
n=1
8o that a@. — 0 is a necessary condition for convergence.
If no factor is zero, it is natural to compare the product (15) with the
infinite series

(16) E log (O 4+ a,).

n=1

Since the a, are complex we must agree on a definite branch of the
logarithms, and we decide to choose the principal branch in each term.
Denote the partial sums of (16) by S,. Then P, = €5, and if §,— 8
it follows that P, tends to the kimit P = ¢° which is s 0. In other
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words, the convergence of {(16) is a sufficient condition for the con-
vergence of (15).

In order to prove that the condition is also necessary, suppose that
P, — P # (, and choose a fixed value of log P, for instance the value of
the principal branch. With the corresponding value of arg P determine
arg P, by the condition argP — 7 < arg P, € arg P+ «, and set
log P, = log |P.) + iarg P.. We know that S, = logP. + h, - 2,
where h, 18 2 well-determined integer. For two consecutive terms we
obtain

(hnyr — ha)2ri = log (1 + a.y1) + log P — log Py,

We need pay attention only to the imaginary parts. As n is sufficiently
large we have for instance larg (1 + @)} < 27/3, |arg P — arg P|
< 2n/3, and larg P,y — arg P| < 27/3. 'These inequalities imply
|Prss — hal < 1, and thus we conclude that k. = h, for all sufficiently
large n. Ultimately b, is therefore constantly equal to a certain integer
k, and we find that 8, tends to the limit & = log P 4 k- 2ri. We have
proved:

Theorem 5. The infinite product [ (1 + @a) with 1 + a, # 0 converges
1

stmullaneously with the seriesz log (1 + a.) whose terms represent the
)

values of the principal branch of the logarithm.

The question of convergence of a product can thus be reduced to the
more familiar question concerning the convergence of a series. It can be
further reduced by observing that the series (16) converges absolutely at

the same time as the simpler series Z |a,|. This is an immediate conse-
guence of the fact that

lim log (1 +2) _ 1.
230 2
If either the series (16) or E |et.| converges, we have a,— (), and for a
1
given & > 0 the double inequality
(I — glad < flog 1 + a.)| < (1 4 e)fa.]

will hold for all sufficiently large n. It follows immediately that the two
series are in fact simultaneously absolutely convergent.
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An infinite product is said to be absolutely convergent if and only if
the corresponding series (16) converges absolutely. With this termi-
nology we can state our result in the following terms:

Theorem 6, A necessary and sufficient condition for the absolute con-

vergence of the product I1Q + a,) és the conwvergence of the series 2 la,.).
1 1

In the last theorem the emphasis is on absolute convergence. By

w

simple examples it can be shown that the convergence of E .. 18 neither
1

sufficient nor necessary for the convergence of the product [] (1 + a.).
1

It is clear what to understand by a uniformly convergent infinite
product whose factors are functions of a varinsble. The presence of
zeros may cause some elight difficulties which ecan usually be avoided
by considering only sets on which at most a finite number of the factors
can vanish, [f these factors are omitted, it is sufficient to study the
uniform convergence of the remaining product. Theorems 5 and 6 have
obvious eounterparts for uniform convergence. If we examine the proofs,
we find that all estimates can be made uniform, and the conclusions lead
to uniform convergence, at least on compact sets.

EXERCISES
1. Show that

2, Prove that for [2] < 1

42204+ 4290428 ... =
3. Prove that

[1 (1 + ;;j) e

1

converges absolutely and uniformly on every compact set.

4. Prove that the value of an absolutely econvergent product does not
change if the factors are reordered.

5. Show that the function

66 = 1] (1 + B )1 + o)
1
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where |h| < 1 is analytic in the whole plane and satisfies the functional §

equation
6(z + 2log h) = k=4 (z).

2.3. Canonical Products. A function which is analytic in the whole ]
plane is said to be entire, or integral. The simplest entire functions §

which are not polynomials are ¢, sin z, and cos .

If gz} is an entire function, then f(z) = & is entire and 7= 0. Con- §
versely, if f(z) is any entire function which is never zero, let us show |
that f(2) is of the form e#®. To this end we observe that the funetion §
F(2)/f(2), being analytic in the whole plane, is the derivative of an entire
function ¢(z). From this fact we infer, by computation, that f(z)e o= }
has the derivative zero, and hence f(2) iz a constant multiple of e ; the ]

constant can be absorbed in g(z).

By this method we can also find the most general entire funetion with
a finite number of zeros. Assume that f(z) bas m zeros at the origin {
., an, ultiple

{(m may be zero), and denote the other seros by a4, gz, . .
zerog being repeated. It is then plain that we can write

L

N
1) = gmesta [ (1 - i).

If there are infinitely many zeros, we can try to obtain a similar repre- |
sentation by means of an infinite product. The obvious generalization §

would be

17 f(z) = zmento ﬁ (1 _ _-?_).
:

a"

This representation is valid if the infinite product converges uniformly
on every compact set. In fact, if this is so the product represents an
entire function with zeros at the same point (except for the origin} and
with the same multiplicities as f(z). It follows that the quotient can be
written in the form zmer(®,

The product in (17) converges absolutely if and only if E 1/} ig
i

convergent, and in this case the eonvergence is also uniform in every
closed disk |2] £ R. It is only under this special condition that we can
obtain a representation of the form {17).

In the general case convergence-producing factors must be introduced.
We consider an arbitrary sequence of complex numbers a, # 0 with
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lim @, = =, and prove the existence of polynomisals p,(2) such that

= z
w® i(1-2) e
1

converges to an entire function. The product converges together with
the series with the general term

ra(2) = log (1 — —‘3) + p.(2)

L2

where the branch of the logarithm shall be chosen so that the imaginary
part of r,(z) Lies between —x and = (inclusive), .

For a given R we consider only the terms with |a.| > R. In the disk
|zl £ R the principal branch of log (1 — z/a4) ean be developed in a
Taylor series

oef1 - Yo 2 _LfzY _1f2\ |
o8 el a, 2\a, 3\a, -

We reverse the signs and choose p.(2) as a partial sum

1 d 1 f2Y\
pn(2)=;i+§(§n) + - +f'—n:(a;) .

Then r.(z) has the representation

1 z il i E2 sk
T”(z)=m,.+l . m, + 2\a,

and we obtain easily the estimate

1 { R\~ R\
— {2t 1—-2) .
(19) irﬂ(z)l g Mn + l(lanl) ( Iaﬂl)
Buppose now that the series
« 1 R\t
(20) ,;2::1 ms + 1 (T&n_])

converges. By the estimate (19) it follows first that r.(z) — 0, an'd
hence r.{z) has an imsginary part between —= and 7 as soon as n is
sufficiently large. Moreover, the comparison shows that the series
Zr,(z) iz absolutely and uniformly convergent for |z| < R, and thus the
product (18) represents an analytic function in |z| < E. For the sake
of the reasoning we had to exclude the values |a,| = R, but it is clear
that the uniform convergence of (18) is not affected when the corre-
sponding factors are again taken into account.

It rermains only to show that the series (20) can be made convergent
for all B. But this is cbvious, for if we take m, = n, (20) becomes a
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power geries with an infinite radius of convergence a8 seen either by use
of the formula for the radius of convergence or by consideration of a
majorant geometric geries for any fixed value of R,

Theorem 7. There exists an entire function with arbitrarily prescribed
zeros a. provided that, in the case of infinitely many zeros, g, — w, Every
entire function with these and no other zeros can be writlen in the form

© LIFR YA IR ¥ A L
@) @ =eeo T (1= 2)at@) (D)
[0 | &
where the product is taken over all a, = 0, the m, are certain integers, and
g(2) is an entire function.

This theorem is due to Weierstrass. It has the following important
corollary:

Corollary. FEvery function which s meromorphic in the whole plone is
the quotient of two entire funciions,

In fact, if F(2) is meromorphic in the whole plane, we can find an
entire function g(z) with the poles of F(z) for zeros. The product F(z)g(z)
is then an entire function f(z), and we obtain F(2) = f(2)/g(2).

The representation (21) becomes considerably more interesting if it is
posgible to choose all the m, equal to each other. The preceding proof
has shown that the product

(22) n (1 —_ Ez;) €i+;(a"z,,)’+--. +%(E,:)A
1

converges and represents an entire function provided that the series

Z (B/laaly**/(h + 1) converges for all R, that is to say provided that

na=l

Z1/|a.*! < . Assume that h is the smallest integer for which this
series converges; the expression (22) is then called the canonical product
associated with the sequence |a.}, and b is the genus of the canonical
product.

Whenever possible we use the canonical produet in the representation
{21), which is thercby uniquely determined. If in this representation
g{z) reduces to a polynomial, the function F(2) is said to be of finite genus,
and the genus of f(z) is by definition equal to the degree of this polynomial
or to the genus of the cancnical product, whichever is the larger. For
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instance, an entire function of genus zero is of the form

Cz’"li[ (1 — —éim)

with Z1/jan] < «. The canonical representation of an entire function
of genus 1 is either of the form

oz 1 — _i £4[-
Czme l;[ (1 an) e
with Z1/]a.|? < =, Z1/|a,] = w«, or of the form

=

z
Ceme== [ (1 - E:)

1

with Z1/]a,] < «, « = 0.

As an application we consider the product representation of sin =z
The zeros are the integers 2z = +n. Since 21/n diverges and Z1/n2
converges, we must take h = 1 and obtain a representation of the form

. k4

8in #z = zes@ 1 — "),
-,
77l

In order to determine g(z) we form the logarithmie derivatives on both
sides. We find

1 1
reobre =S+ g + ) (zfn + ﬁ)
n=0

where the procedure is easy to justify by uniform convergence on any
compact set which does not contain the points z = n. By comparison
with the previous formula (10) we conclude that ¢’(z) = 0. Hence g(z)

15 & constant, and since lim sin w2/2z = 7 we must have e#® = z, and thus
—0

(23) sinwz = wz || (1 - 5) ein,
n #0

In this representation the factors corresponding to n and —n can be
bracketed together, and we obtain the simple form

(24) sin 7z = =z || (1 - nig)

1

It follows from (23) that sin #z is an entire function of genus 1.




196 COMPLEX ANALYSIS

EXERCISES

1. Buppose that a,— « and that the A4, are arbitrary complex
numbers. Show that there exists an entire function f(2) which satisfies
flaa) = A..

Hint: Let g(z) be a function with simple zeros at the a,. Show that

i ( ) gtniz—an) A,
F L
1 g Z— Gy g (a?*)

converges for some choice of the numbers v,.
2. Prove that

sin 7z + a) = emeotra [] (1 +

— a0

ez nta)
n+ o

whenever a is not an integer. Hint: Denote the factor in front of the
canonical product by g(2) and determine ¢'(2) /g(2).

3. What is the genus of cos 1/z?

4. If f(2) is of genus h, how large and how small can the genus of (%)
be?

5. Show that if f(2) is of genus 0 or 1 with real zerog, and if f(z) is real
for real 2, then all zeros of f'(z) are real. Hint: Consider Im F @/,

2.4. The Gamma Function. The function sin 7z has all the integers
for zeros, and it is the simplest function with this property. We shall now
introduce functions which have only the positive or only the negative
integers for zeros. The simplest function with, for instance, the negative
integers for zeros is the corresponding canonical product

o

(25) 6@z =] (1 + ﬁ"") i,

1

It is evident that G(—z) has then the positive integers for zeros, and by
comparison with the product representation (23) of sin 2z we find at once

(26) 6EG(—2) = T,

Because of the manner in which G(2) has been constructed, it is bound
to have other simple properties. We observe that G(z — 1) has the same
zeros a8 (i(z), and in addition a zero at the origin, It is therefore clear
that we can write

Gz — 1) = 2ev@G(z),
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where ¥(2) is an entire funetion. In order to determine 7(z)_ we take the
Jogarithmic derivatives on both sides. This gives the equation

o 1 N 1., (1 10
@) z(zﬁ_1+n—ﬁ)=;+1<z)+z(z+n H
r=1

nw=l

Tn the series to the left we can replace n by n 4+ 1. By this change we
obtain

1 o (1 1 (1 1).
=E_I+E(z—m—n)+2(n n+1
A=l

a=1

The last series has the sum 1, and hence equation (27) reduces to ¢'(2) = 0.
Thus 7(z) is a constant, which we denote by v, and (2} has the reproduc-
tive property G(z — 1) = ev2((z). 1t is somewhat simpler to consider
the function H(z) = G(2)er* which evidently satisfies the funetional equa-
tion H{z — 1) = zH(z).

The value of v is easily determined. Taking z = 1 we have

1 = G(0) = erG(1),

—y w l —Hn
ew_nljl(1+n)e .

Here the nth partial product can be written in the form

and hence

(n 4 1)eOFitiF - +im,
and we obtain

1
v = lim(l-l—é—}-;—i— "-—I-;%mlogn).

n— @

The constant  is ealled Euler’s constant; its approximate value is .57_722.
If H(z) satisfies H(z — 1) = zH(z), then P(2) = 1/[zH(2)] satisfies
He—1) =T/ — 1), or

(28) Iz + 1) = 21(2).

This 18 found to be a more useful relation, and for this reason it has
become customary to implement the restricted stock of elementarg.r fune-
tions by inclusion of I'(z) under the name of Euler's gamma funclion.
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Our definition leads to the explicit representation
T b —1
(29) I'(z) = "7 H (1 + ;f) e*ln,
n=1

and the formula (26) takes the form

(30) THr(l —z2 =

8in wz

We observe that T'(z) is a meromorphic function with poles at z = 0
—1, . but without zeros.

We have I'(1} = 1, and by the functional equation we ind T'(2) = 1,
T'@3)=1-2,T4) =1-2-3andgenerally I'(n) = (n — 1)1. The I‘-funcm
tion can thus be considered as a generalization of the factorial. From (30)
we conclude that T}) = v/«.

Other properties are most easily found by considering the second
derivative of log I'(z) for which we find, by (29), the very simple expression

Loy y L
dze\T(z) /] & e+ n)
For instance, it is plain that T'(z) T(z 4+ 1) and I'(22) have the same poles,
and by use of (31) we find indeed that

»

@31

(2} ’ : 3 3
() rE(RE T 5)- 2 ey + ) T
[Z(Qz+2n)”+2(23+21n+1)] Z 2z+m)2
za(%g“f)l)'

By integration we obtain
PET(z + §) = eH0(2e),

where the constants ¢ and b have yet to be determined. Substituting
z = } and 2z = 1 we make use of the known values T'(}) = /7, I'(1) =
(1) = iT@}) = 1 v/7, I'(2) = 1 and are led to the relations

ja+b=1logm, a+b=4logm — log2.
It follows that
a= —2]log2 and b={logw 4 log2;
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the final result is thus
VrI(2) = 22 T(@T(z + })

which is known as Legendre’s duplication formula.

EXERCISES

1. Prove the formula of Gauss:

n—1
(@2m) 2 I'(z) =ntT (f) T (f’..ﬂi_}) ceeT (M)
n 7] n
2. Show that
1 LAY 1\2
T(E) k *(;;) T(“g)'

3. What are the residues of I'(z) at the poles 2z = —n?

2.5. Surling’s Formula. In most connections where the ' function
can be applied, it is of utmost importance to have some information on
the behavior of I'(z) for very large values of z. Fortunsately, it ig possible
to caleulate T'(z) with great precision and very little effort by means of a
classical formula which goes under the name of Stirling’s formula.
There are many proofs of this formula. We choose to derive it by use of
the residue calculus, following mainly the presentation of Lindelsf in his
classical book on the calenlus of regidues. This is & very simple and above
all a very instructive proof inasmuch as it gives us an opportunity to use
residues in less trivial cases than previously.

The starting point is the formula (31) for the second derivative of
log I'(z), and our immediate task is to express the partial sum

1 1 1
i teroar Tt LTSy

as & convenient line integral. To this end we need a function with the
residues 1/(z + »)* at the integral points »; a good choice is

1
2+

7 cot =

z+0F

Here ¢ is the variable while z enters only as a parameter, which in the first
part of the derivation will be kept at a fixed valuez = z 4 sy witha > 0.

We apply the residue formula to the rectangle whose vertical sides lie
on £=0and £ = n -+ } and with horizontal sides v = +Y, with the
intention of letting first ¥ and then n tend to . This contour, which

() =
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we denote byﬂ K, passes through the pole at 0, but we know that the
formuls remains vakid provided that we take the principal value of the

integral and include one-half of the residue at the origin. Hence we
cbtain

X 1oy 1

On the horizontal sides of the rectangle cot ¢ tends uniformly to +1
for Y — «. Since the factor 1/(z 4 {)? tends to gzero, the corresponding
integrals have the limit zero. We are now left with two integrals over
infinite vertical lines. On each line & = n 4 % cot x¢ is bounded, and
because of the periodicity the bound is independent of n. The integral
over the line § = n + } is thus less than a constant times

dn
t=n-} ]g- + ZI?'
This integral can be evaluated, for on the line of integration

f=om+1-g
and we obtain by residues

”l“f dt _ 5[ di _ 2r
U SR T A (I3 B ey ar Sl Mo S oy
The Bmit for n— « is thus zero.

Finally, the principal value of the integral over the imaginary axis
from —iew to +ie ean be written in the form

1 f= . 1 i - 2nz
2]:) cot. wiy [(?”, +22) - (Z'l] - 2)2] dn = — ﬁ) cotth-de.

The sign has to be reversed, and we obtain the formula

dfr'@my _ 1 - 2
(32) = (r(z)) =55+ [ cothm Gt

It is preferable to write

2
COt;h‘lr‘q=1+W

and observe that the integral obtained from the term 1 has the value 1/z
We can thus rewrite (32) in the form

d (1(z) 1 1 e 4y it
3 =t me .o
(33) dz (I‘(z)) z + 2z2 + ./l; {n® + 202 et —

where the integral is now very strongly convergent.

SERIES AND PRODUCT DEVFLOPMENTS an

For z restricted to the right half plane this formula can be integrated.
We find

T'(z) 1 e 2y dn
(39 T —Ct logz— 35— [ o i B U

where log z is the principal branch and C is an integration constant. The
integration of the last term needs some justification. We have to make
sare that the integral in (34) can be differentiated under the sign of
integration; this is so because the integral converges uniformly when z is
restricted to any compact set in the half plane x > 0,

We wish to integrate (34) once more. This would obviously intro-
duce arc tan (z/q) in the integral, and although a single-valued branch
eould be defined we prefer to avoid the use of multiple-valued functions.
That is possible if we first transform the integral in (34) by partial integra-
tion. We obtain

fm 29 dn I fe 22 — 52
0

. = - — p—de
0 22 et — 1 z Jo (flz + 22)2 Iog (l € 1’) dy

where the logarithm is of course real. Now we can integrate with respect
to z and obtain

(35) log T(z)
i 1 1p- s 1
= C -1-Cz+(z §)Eogz+wj{; ﬂ2+zzloglmg,_mdﬂ

where C' is a new integration constant and for convenience ¢ — 1 has
been replaced by C. The formula means that there exists, in the right
half plane, a single-valued branch of log T'(z) whose value is given by
the right-hand member of the equation. By proper choice of ¢’ we
obtain the branch of log T'(z) which is real for real 2,

It remains to determine the eonstants C and €*.  To this end we must
first study the behavior of the integral in (35) which we denote by

1 p= 2 1
(36) J() =~ L 2 2 log y gz -

It is practically evident that J{z) — 0 for 2 — =« provided that z keeps
away from the imaginary axis. Suppose for instance that z is restricted
to the half plane z = ¢ > 0. Preaking the integral into two parts we
write

I2|

J() = LE+[%:°=J1+J2.
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In the first integral 92 + 22| = |27 — [2/2|® = 3|2|*/4, and henee

1

4 -]

g—2‘rq d?].

In the second integral |42 -+ 22| = |z — | - [z + ] > clz], and we find

A <~1~jwlog1 !

c — g T

dn.
e n
2

Since the integral of log (1 — e~27) is obviously convergent, we conclude
that J; and J: tend to 0 a5 2z —+ 0.

The value of C is found by substituting (35) in the functional equa-
tion T(z+ 1) = 2I'(z) or log T(z 4+ 1) = log z + log T'(z2); if we restrict z
to positive values, there is no hesitancy about the branch of the logarithm,
The substitution yields

C+CH+CH+e+Dlogz+ 1) +JE+1)
=C+Cz+ 4+ Plogz + J (=),
and this reduces to

= —(z+%)10g(1 +§)+J(z) —JGe+ 1),

Letting z — o we find that ¢ = —1.
Next we apply (35) to the equation T(z)T(1 — 2) = x/sin #z, choos-
ingz =1 +44d. Weobtain

20" =L+ iylog G+ i) —iylog G — i) +JG + i) + TG — i)
= log = — log cosh =y.

This equation, in which the logarithms are to have their prineipal values,
is so far proved only up to 2 constant multiple of 2ri.  But for ¥ = 0 the
equation is correct as it stands because (35) determines the real value of
log T'(3); hence it holds for all 4. As y—» « we known that J &+
and J(3 — iy) tend to 0. Developing the logarithm in a Taylor serics
we find

1
. 14
1 . 2
iylog £ £ — iy | 2i 4 log—=F | = —ay + 1 4 uly)
b Y 1 —
2y

while in the right-hand member

log cosh y = 7y — log 2 + ex(y)
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with e,(y) and €(y) tending to 0. These considerations yield the value
¢’ = } log 2r. We have thus proved Btirling’s formula in the form

(37 logT(@) =%log2r — 2+ (2 — D logz + J(2)
or equivalently
(38) T(2) = v/ 2r 2 el @

with the representation (36) of the remainder valid in the right half plane.
We know that J(z) tends to 0 when z— « in a half plane z = ¢ > 0.

In the expression for J(z) we can develop the integrand in powers of
1/z and obtain

=244 .. . 4+ 8 4
z A 4
with
1 = 1
(39) Co= (=1 = [7 art log 5 dn
and
_(=1PL g g 1
I = Tt 7 b 7 OB T e O

It can be proved (for instance by means of residues) that the coefficients
C, are connected with the Bernoulli numbers (ef. Ex. 4, Sec. 1.3} by

1
(40 C, = (“I)WIW-&-
Thus the development of J(z) takes the form

B:il _ B, 1,
T2z 3.4 27"

(1) J@ =

By 1

+ (—l)k—lm;"_l + Jk(Z).
The reader is warned not to confuse this with a Laurent development.
The function J(z) is not defined in & peighborhood of « and, therefore,
does not have a Laurent development; moreover, if k— o, the series
obtained from (41) does not converge. What we can say is that for a
fixed k the expression Ji(2)z%* tends to 0 for z— « (in a half plane
x = ¢ > 0). This fact characterizes (41) as an asymplotic development.
Such developments are very valuable when z is large in comparison with
k, but for fixed z there is no advantage in letting k become very large.

Stirling's formula can be used to prove that

(42) T(z) = L * et
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whenever the integral cOnVerges, that is to say for = > 0. Until the
identity has been proved, let the integral in (42) be denoted by F(2).

Tntegrating by parts we find at once that
Fie +1) = L‘” i dt = 2 j;” -t dt = 2F (2.

Henee F(2) antisfies the same functional equation as T(z), and we find
that F(2)/T( = F(z + /T + 1. In other words F(2)/T(2) is
periodic with the period 1. 'This ghows, incidentally, that F(2) can be
defined in the whole plane although the integral representation is valid
only in a half plane.

Tn order to prove t
in a period gtrip, for instanc
we have by (42)

hat F(z)/T(2) 18 constant we have to estimate |F/T|
e in the strip } =@ < 2. Inthe first place

\F@@) £ j;“ -t dt = Fla),

i« bounded in the gtrip. Next, we use gtirling's formula

and hence F(z)
From (37) we obtain

to find a lower hound of |T(2)] for large y-

log IT@| = liog2r — % 4 (z — %) log |e} — y axg 2 4 Re J(2).

Only the term —¥ arg z hecomes negatively infinite,
—rlyl/2. Thus \F/T\ does not grow much more rapidly than emv

For an arbitrary function this would not suffice to conclude that the

function must be constant, but for a function of period 1 it is more than

clear that F/¥ can be expressed a8 & single-valued
function of the variable § = gxis; to every value of § # 0 there corre-
spond infinitely many values of z which differ by multiples of 1, and thus
o single value of F/r. The function has isolated gingularities at { = 0
and ¢ = o, and ou¥ estimate shows that |F/T| grows at most like \¢17
for t—0 and |(}F for {— - 1t follows that hoth singularities are
removable, and hence F/1' must reduce to a constant.
that F(1) = T} = 1 shows that F (2) = T{a)-

being comparable to
e,

enough. In fact, it is

EXERCISES

1. Prove the development {41).
2. For real z > 0 prove that
() = \/5—3; x:-—}e-—zeﬂ(z)fux

with 0 < 0(x) < 1.
3. The formula (42) permits us to evaluate the 'probability integral

[fera=y ) et = @ 7 V.

Finally, the fact
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Use this result to :
gether with C 'a t
integrals auchy’s theorem to compute the Fresnel

j(; * sin (z2) dx, [] * cos (x?) dz.

Answer: Both are equal to § v/ /2.

3. ENTIRE FUNCTIONS

n Sec. 2. i

iions (;15231 f;z:z_:tléave iailready (:ons%dered the representation of entire func-

o etion W;)r(i :;ets, and, in s_pecial cases, as eanonieal products

in t and ction we ifu y the connection between the product representa;

I by,Had grow;,h of the funetion. Such questions were ﬁrét

e Mamb a{nar who applied the results to his celehrated proof
mber Theorem. Space does not permit us to include this

application, but the basic import :
B ite evident, portance of Hadamard's factorization theo-

3.1. * . 4 l'S 8 y l}lc mlctzloll tlle]] Og <z 18
‘ Je,l,se'l SV F‘)I l]l,ul Iff( ) 141 all&l i f i ) 1 lf( )l
}lﬂ] momda exccpt a»t E}he Zer j Y

#3) log [f0)] = o 1" log Lf(pe®)] de,

and {(I)‘tgl 6] can be expressed by Poisson’s formula.

The sirz;;};agfsof(ﬁ)br;ig?u'ls'vahd if (2) has zoros on the circle |2] = ¢
ViGN 1 : )

zero. It is sufficient to show thaif(Z) with one factor z — pe® for each

1 2r .
logp = 5 fo log |pe*® — pei™| df

or

f?:rl " "
[ log |6 — e do = 0.

Thisi . .
his integral is evidently independent of 8, and we have only to show that

25
i log [t — e} dé = 0.

But this is a consequence of the formula

ﬁ log sin x dz = —= log 2

proved in Chap. 4, See. 5.3 (ef. Chap. 4, See. 6.4, Ex. 5).




206 COMPLEX ANALYSIE

We will now investigate what becomes of (43) in the presence of zeros
: -+ Ga, multiple §
zeros being repeated, and assume first that z = Disnot a zero. Then the §

in the interior |2| < p. Denote these zeros by a,, as, . .

function

F(z) = f(2) II il “‘z)

L plz —

s free from zeros in the disk, and [F(z)| = |f(:)|on lel = 5. Consequently §

we obtain

log [FO) = o [[" log | (eei)| do

and, substituting the value of F(0),

a9 gl = = Y log(2)) + 55 [, log liteen) ds.

i=}

This is known as Jensen's formule. Its importance lies in the fact that |

it relates the modulus [f(2)| on a cirele to the moduli of the zeros.

if f(0) = 0, the formula is somewhat more complicated. Writing
- we apply (44) to f(z)(p/2)* and find that the left-hand

fla) =c* + - -
member must be replaced by log |¢| 4 h log p.

There is a similar generalization of Poisson’s formula. All that is
needed is to apply the ordinary Poisson formula to log |[F(z)|. We obtain 4

d,z

5) loglfel = — ¥ log| ZZ0E | L 3 p PO ey

i=1

provided that f(z) ¢ 0. Equation (45) is frequently referred to as the
Poisson-Jensen formula.

Strictly speaking the proof is valid only if f = Oon |z| = p. But (44)
shows that the integral on the right is a continuous funetion of p, and
from there it is easy to infer that the integral in (45) is likewise continuous.
In the general case (45) can therefore be derived by letling p approach a
limit.

The Jensen and Poisson-Jensen formulas have important applications
in the theory of entire functions.

:?.2. Hadamard’s Theorem. Let f(z) be an entire function, and denote
its zeros by a,; for the sake of simplicity we will assume that 7(0) = 0.
We recall that the genus of an entire function (See. 2.3} is the smallest
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integer h such that f{2) ean be represented in the form

(46) f(2) = eo® H (1 — £ ) grfanti(e/aa) + - - - + (2 Rz fon}d

where g(2) is a polynomial of degree =h. If there is no such representa~

tion, the genus is infinite.
Denote by M(r) the maximum of |f(z)| on |z} = r. The order of the

entire function f(z} is defined by

\ = fm log log M(r).
T ng r

According to this definition X is the smallest number such that

Ate

(47) M@ < e

for any given ¢ > 0 as soon as 7 is sufficiently large.
The genus and the order are closely related, as seen by the following
theorem:

Theorem 8. The genus and the order of an entive function sofisfy the
double ineguality h = A = h 4+ L.

Assume first that f(z) is of finite genus k. The exponential {factor in
{46) is quite obviously of order =<k, and the order of a product cannot
exceed the orders of both factors. Henee it is sufficient to show that the
canonical product is of oxder =h 4+ 1. The convergence of the canonical

product impliesz |¢a] %t < o ; this is the essential hypothesia.
*®

We denote the canonical product by P(z) and write the individual
factors as En(z/a.) where

Bu(w) = (1 — w)exthtt---+Qmu

with the understanding that Fo(u) = 1 — u. We will show that

(48) log |Ex(u)| £ @h + D)julr+
for all w.
If [u] < 1 we have by powar—series development
lul 2 T 1
gl £ pitrret  FRFii—Ta
and thus

(49) (U ~ lul) log |Ex@)| = ful+,
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For arbitrary w and h = 1,

(50} log |En(u)| = log |Ews(u})| + |ulh
If (50) is multiplied by [u| and added to (49), we obtain
(51) log |Ex(a)| < |ul log |Eni()| + 2[u,

valid for [u| < 1. But for |[u] = 1 (51} is a consequence of (50), prowde(.l ]
that |Eu_i(x)] Z 1. If this condition is not satisfied, then log | Bn ()} 4

= lul* < (Zk + D]u*?* by (50), and (48) is fulfilled.

The truth of (48) follows now by induction. Fork = 0 we have only
to note that log |1 — | < log (1 + |u]) = |u|. Assume that (48) holds
with b — 1 in the place of h. Then, as just shown, either (48) or (51) ¢

holds. In the latter case the induction hypothesis yields
log |E,(w)| = (2h — DMt + 2fu*t = 2k 4 D)fulr+

and (48) is proved.
The estimate (48) gives at once

5 ()
a,

and it follows that P(z) is at most of order h 4 1.

log |P(2)| = Z]Og < (2h + 1)|z|"+‘2 ||

For the opposite inequality assume that f(z) is of finite order A and §
let  be the largest integer <N\, Then h + 1 > ), and we have to prove,
first of all, that E |a.|~"! converges. It is for this proof that Jensen’s 3;

formula is needed.

Let us denote by »(p) the number of zeros e, with |a,| £ p. Inorder
to find an upper bound for »{g) we apply (44) with 2p in the place of p

and omit the terms log (2p/]a.|) with la.| = p. We find
1 ;2» .
(52) vio}log 2 £ o [ log|f(2p¢')| d0 — log | (0)].

In view of (47) it follows that lim »(p)p™¢ = 0 for every e > 0.
gy oy

We assume now that the zeros a, are ordered according to absolute

values: jai| S las| £ -+ - =g = - - -, Then it is clear that
7 < »(|aa]}, and from a certain n on we must have, for instance,

n =< p(|a.]) < |aafte

According to this inequality the series 2 la.|>"! has the majorant
n

R+l

e
zﬂ: n )
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and if we choose ¢ so that A 4 ¢ < k + 1 the majorant converges. We
have thus proved that f(z) can be written in the form (46) where so far
g(z) is only known to be entire.

It remains to prove that g(2) is a polynomial of degree =h. For this
purpose it is easiest to use the Poisson-Jensen formula. If the opera.ti(?n
(8/8x) — i(8/dy) is applied to both sides of the identity (45), we obtain

w{p} »(p}

i.ézz)) 2 (g — a7 + 2 du(p? — Gu2)

i i — 13
ﬂ j:‘Zpe"(pe’ 2)% log |flpe™®)] d6.

On differentiating h times with respeet to z this yields

v(p)

(53) D®™ :_ff((z)) —h! Z (@, — 2y 1+ Al E @A — Gy

+ 0+ Dy [ 206(oei — -2 log |f(se)| do.

It iz our intention to let p tend to <. In order to estimate the inte-
gral in (53) we observe first that

E” pet(pe?® — 2y 2 df = 0,

Therefore nothing changes if we subtract log 3 (p) from Iog [f].  1f p > 2]
it follows that the last term in (53} has & modulus at most equal to

(h 4 1)12Msh1 /’”Io M (”) de,
for log M(p)/|f(ee™)] Z 0. But
o [ o8 1110 2 log |10

by Jensen’s formula, and p*-1log M{p) — O since » < h + 1. We con-
clude that the integral in (53) tends to 0.

As for the second sum in (53), the same preliminary inequality
p > 2|z| together with |a.| < p makes each term absohitely less than
{2/p)*+1, and the whole sum has modulus at most Z*+tw(p)p™1. We have
already proved that this tends to 0. Therefore we obtain

4) Do ;9")’ —h! "Z! (@ — &7
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Writing f(z) = e@P(z) we find
f.f
00y — DL _ pm L

However, by Weierstrass’s theorem the quantity D™ (P /P) can be found
by separate differentiation of each factor, and in this way we obtain
precisely the right-hand member of (54). Consequenily, g®+9(z) is
identically zero, and g{2) must be a polynomial of degree £h. We have
proved Theorem 8.

The theorem is a factorization theorem for entire functions of finite
order . If A iz not an integer, the genus 4, and thereby the form of the
product, is uniquely determined. If the order is not integral, there is an
ambiguity.

The following impressive corollary shows the strength of Hadamard'’s
theorem:

Corollary. An entwe function of fractional order assumes every finite value
infintlely many times.

It i clear that f and f — a have the same order for any constant a.
Therefore we need only show that f has infinitely many zeros. 1If f has
only a finite number of zeros we can divide by a polynomisal and obtain a
function of the same order without zeros. By the theorem it must be of
the form ¢ where ¢ is & polynomial. But it is evident that the order of
¢? is exactly the degree of g, and hence an integer. The contradiction
proves the corollary.

4. NORMAL FAMILIES

In Chap. 3, Bee. 1 we have already familiarized the reader with the idea
of regarding a function as a point in a space. In principle there is thus
no difference between a set of points and a set of functions. In order to
make a clear distinetion we shall nevertheless prefer to speak of families
of functions, and usually we assume that all functions in a family are
defined on the same set.

We are primarily interested in families of analytic functions, defined
in a fixed region. Important examples are the families of bounded
analytic functions, of functions which do not take the same value twice,
ete. The aim is to study convergence properties within such families.

4.1. Equicontinuity. Although apalytic functions are our main eon-
cern, it is expedient to choose a more general starting point. It turns out
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that our basic theorems are valid, and equally ‘easy to prove, for families
of functions with values in any complete metric space.

As a basie assumption we shall let § denote a family of funetions f,
defined in a fixed region @ of the complex plane, and with values in &
complete melric space 8.  Asin Chap. 3, Sec. 1 the distance funetion in S
will be denoted by d.

We are interested in the convergence of sequences {f.} formed by
functions in . There is no particular reason to expect a sequence {f,)
to be convergent; on the contrary, it iz perhaps more likely that we run
inte the opposite extreme of a sequence that does not possess a single
convergent subsequence. In many situations the latter possibility is a
serious disadvantage, and the purpose of the considerations that follow
is to find conditions which rule out this kind of behavior.

Let us review the definition of continuity of a funetion f with values
in & metric space. By definition, f s continuous at zo if to every e > 0
there exists a & > 0 such that d(f(2),f(20))< € ag soon as |z — z)| <e.
We recall that f is sald to be uniformly continuous if we can choose &
independent of z,. But in the case of a family of functions there is
another relevant kind of uniformity, namely, whether we can choose &
independent. of f. 'We choose to require both, and are thus led to the
following definition:

Definition 1. The functions in a family § are savd to be equicontinuous on
a set E C @ if and only #f, for each ¢ > 0, there exists a & > 0 such that
A(f(2),f(z0)) < e whenever |z — 2| < § and 2o,z € E, simultaneously for all
Sfunctions fe §.

Observe that, with this definition, each f in an equicontinuous family
is itself uniformly continuous on E.

We return now to the question of convergent subsequences. Our
second definition serves to characterize families with a regular behavior:

Definition 2. A famdly § is said to be normal in @ if every sequence {f,}
of funetions f. € § contains a subsequence which converges uniformly on every
compact subset of €.

This definition does not require the limit funetions of the convergent
subsequences to be members of .

4.2. Normality and Compactness. The reader cannot fail to have
noticed the close similarity between normality and the Bolzano-Weier-
strass property (Chap. 3, Theorem 7).  To make it more than a similarity
we need to define a distance on the space of functions on @ with values
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in 8, and convergence with respect to this distance function should mean
precisely the same as uniform convergence on eompact sets.

For this purpose we need, first of all, an exhaustion of Q by an increas-
ing sequenee of compact sets F, C Q. By this we mean that every
compact subset I of © shall be eontained in an E,. The construetion is
possible in many ways: To be specific, let E}, consist of all points in © at
distance < k from the origin, and at distance = 1/k from the boundary
8. It is clear that each F, is bounded and closed, hence compact,
Any compact set £ C @ is bounded and at positive distance from 3Q;
therefore it is contained in an E;.

Let f and g be any two functions on Q@ with values in S. We shall
define a distance p(f,g) between these functions, not to be confused with
the distances d(f(z),g(z)) between their values. To do so we first replace
d by the distance function

d{a,b)
1 + d(ab)

which also satisfies the {riangle inequality and has the advantage of being
bounded (Chap. 3, Sec. 1.2, Ex. 1). Next, we set

&(f,g) = sup 8(f(2},0(=))

which may be described as the distance between f and g on E;. Finally,
we agree on the definition

8(a,b) =

w

(55) o) = ) &lfg)2™.

f=1

It is trivial to verify that p(f,g) is finite and satisfies all the conditions for
a distance function (Chap. 3, See. 1.2).

The distance p(f,g) has the property we were looking for. Suppose
first that f, — f in the sense of the p-distance. For large n we have then
e(f-,f) < e and consequently, by (55), &.(f.,f) < 2%. But this implies
that f, — f uniformly on E, first with respect to the s-metric, but hence
also with respeet to the d-metric. Since every compact E is contained in
an F it follows that the convergence is uniform on E.

Conversely, suppose that f, converges uniformly to f on every com-
pact set. Then 8,(f,,f) — 0 for every k, and because the series Z8,(f.,)2*
has a convergent majorant with terms independent of # it follows readily
(as in Welerstrass's M test) that p(f.,f) — 0.

We have shown that convergence with respect to the distance p is
equivalent to convergence on compact sets. An even simpler reasoning,
which we leave to the reader, shows that the space of all functions with
values in S is complete as a metric space with the distance p.
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Tt can be gaid with some justification that the metric we have intro-
duced is arbitrary and artificial. However, from what we have proved
it, follows that the open sets are independent of the choices involved in
the construction, In other words, the topology has an intrinsic meaning,
tailored to the needs of the theory of analytic functions.

We now recall the Bolzano-Weierstrass theorem, according to which
a metric space is compact if and only if every infinite sequence has a
convergent subsequence (Chap. 3, Theorem 7). The theorem is applied
to the set §, equipped with the distance p, and we conclude that § is
compact if and only if § is normal, end if the limit functions are them-
selves in §. On the other hand, if § is normal, so is its closure §f.
Therefore we obtain the following eharacterization of normal families:

Theorem 9. A family § is normal if and only if is closure §— with
respect to the distance function (55) is compact.

It ie algo customary to say that § is precompact {(or relatively compact)
if % is compact. Thus, normal and precompact families are the same.

Finally, let us also characterize normality in terms of total bounded-
ness. According to Chap. 3, Theorem 6, the set §~ is compaet if and
only if it is complete and totally bounded. But as a closed subset of a
complete space §~ is automatically complete (this is where we use the
completeness of §). It is clear that {— is totally bounded if and only if
& is totally bounded, and this is so if to every ¢ > 0 we can find a finite
number of functions fi, . . ., fae§ such that every fe § satisfies
p(f.f)) < eforsomef;. By (65) thisimplies 8:(f,f;)) < 2%, or 8(f,f;) < 2%
on E,. If we fix k& beforehand, we can thus make 8(f,f;) arbitrarily small
on ¥4, and the same is true of d(f,f). This proves one part of the follow-
ing theorem:

Theorem 10. The family § is normal 4f and only if to every compact set
E C 9 and every e > 0 it is possible to find fs, . . . , fo € 5 such that every
f € § satisfies d(f,f;) < e on E for some f;.

For the proof of the converse part, determine ko so that 2% < gf2.
By assumption we ean find fj, . . . , f, such that, for any fe §, one of
the inequalities 8(f.f;) = d(f.f) < &/2ko holds on Ei. It follows that
8:(f,1) < e/2k, for k < ky, while trivially 8(f,f) < lfork > k. From
(55) we obtain

P(f:j})<k02iko+(2‘krl+g—h—2+ . ')=*§+2_k°<£,

which is precisely what we wanted to prove.
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4.3. Arzela’s Theorem. We shall now study the relationship between
Definition 1 and Definition 2. The connection is established by a famous
and extremely useful theorem known as Arzela’s theorem (or the Arzela-
Ascoli theorem).

Theorem 1L, A family § of continuous functions with values in a melric
space S is normal @n the region Q of the complex plane if and only if

() § 7s equicontinuous on every compact set E C Q;

(i} for any z € Q the values f(z), f € &, lie in a eompact subset of S.

We give two proofs of the necessity of (i). Assume that § is normal
and determine f;, . . . | f. as in Theorem 10. Because each of these

functions is uniformly continuous on E we can find a § > 0 such that ‘
d(fi(2),fi(z0)) <c for zze R, Jz — z| < 8, =1 ..., n For any 1

given f € § and corresponding f; we obtain

d(f(2),f(za)) = d(f(2), 052D + d(file).Filze)) + d( Sz}, fz)) < 3e

and (i) is proved.

Less elegantly, but without use of Theorem 10, a proof can be given . 1

as follows: If & fails to be equicontinuous on F there exists an & > 0,
sequences of points z,,2, € E, and functions f, € § such that |z, — 2l —0

while d(fu(z.),fa(2;)) 2 e for all n. Because E is compact we can choose |
subsequences of {z,} and {2} which converge 10 a common limit 2’ € E &
and because § is normal there exists a subsequenee of {f.! which eon- $

verges uniformly on E. Tt is clear that we may choose all three sub-
sequences to have the same subscripts 7,. The limit function fof {fu}
is uniforraly continuous on £. Hence we can find k such that the distances
from fu(zn) to f(z.,), from f(z,,) to f(z,,), and from f{z,,) t0 f, (<) are all
<¢/3. It follows that d(f., (2.),fu(z)) < e, contrary to the assumption
that d(f.(2,),1.(2)) = e for all .

To prove the neeessity of (ii) we show that the closure of the set
formed by the values f(2), f € §, is compact. Let {w.} be a sequence in
this closure. To each w, we determine f= € § so that d(f.(z),wa} < 1/n.
By normality there exists a convergent subsequence | Ju (@}, and the
sequence {w,,} converges to the same value.

The sufficiency of (i) together with (ii) is proved by Cantor’s famous
diagonal process.  We observe first that there exists an everywhere dense
sequence of peints {; in Q, for instance the points with rational coordinates.
From the sequence {f,! we are going to extract a subsequence which
converges at. all points {z. To find a subsequence which converges at one
given point is always possible because of condition {ii)). We can therefore
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find an array of subscripte

ﬂn<ﬂ“<"'<ﬂau<"'
g < Mg << - v 7 gy, < 0 ov
(56) ...................

...................

such that each row is contaived in the preceding one, and such that
By w fu,,($3) exists for all k. The diagonal sequence {ny) is strictly
increasing, and it is ultimately a subsequence of each row in (56). Hence
{fs.;} I8 a subsequence of {f,} which converges at all points .. For
convenience we replace the notation ny; by =,

Consider now a compact set £ C @ and assume that § is equicon-
tinuous on E. We shall show that {f,} converges uniformly on E.
Given &> 0 we choose § > 0 such that, forz,2’ e Fand fe §, |2 — 2| <
implies d(f(2),f(z)) < /3. Because E is compact, it can be covered by
a finite number of 8/2-neighborhoods. We select a point {3, from each of
these neighborhoods. There exists an ¢, such that 2,7 > ¢, implies
A fai 1), Fn; (1)) < /3 for allthese ;. Toreach z € E one of the {; is with-
in distance & from z; hence d(f,,(2),/n. (1)) < ¢/3, d(£.,(2), fa,(t2)) < /3.
The three inequalities yield d(fx(2),f.,()) < e. Beeause all values f(z)
belong to a coPact and consequently complete subset of § it follows that
{fn;} 15 uniformly econvergent on E.

4.4. Families of Analytic Functions. Analytic functions have their
values in C, the finite complex plane. In order to apply the preceding
considerations to families of analytie functions it is therefore natural to
choose § = C with the usual euclidean distance.

The compact subsets of C are the bounded and closed sets. For
this reason condition (ii) in Arzela’s theorem is fulfilled if and only if the
values f(2) are bounded for each z € @, with a bound that may depend on z.
Suppose now that condition (i) is also satisfied. For a given 2o €%
determine p so that the closed disk |z — 2] = p is contained in ©.  Then
&, the given family of functions, is equicontinuous on the closed disk.
If in the definition of equicontinuity §(< p) corresponds to e, and if
|f(z0)] < M for all fe, then |f(2)] € M + ¢ in |z — 20| < 5. Because
any compact set can be covered by a finite number of neighborhoods with
this property, it follows that the functions are uniformly bounded on
every compact set, the bound depending on the set. According to
Arzela’s theorem this is true for all normal families of complex-valued
funetions,

For analytic functions this condition is algo sufficient.
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Theorem 12. A family § of analytic functions is normal with respect to '
Cif and only +f the functions in § are uniformly bounded on every compact sef,

To prove the sufficiency we prove equicontinuity. Let ¢ be the
boundary of a closed disk in @, of radius .  If 2, z, are inside C we obtain
by Cauchy’s integral theorem

50 = 16 = 57 fi (525 - 5 25 ) 0 @
o &

oz zﬁ j

C 2mi Je (@~ AR — 20
If |f] £ M on C, and if we restrict z and z, to the smaller concentric disk
of radius /2, it follows that

() — fieg| < 212~ 2,

T

(57)

This proves equicontinuity on the smaller disk. 2

Let E be a compact set in . Each point of E is the center of a disk 3
with radius 7, as above. The open disks of radius r/4 form an open §
covering of E.  We select a finite subcovering and denote the correspond- §
ing centers, radii, and bounds by &, 7, M:; let r be the smallest of the
. and M the largest of the M,. For a givenz > 0 let § be the smaller of
7/4 and er/4M. I |z — 2| < & and |zo — & < 7/4 it follows that
le — &l < &8+ 7/4 £ /2. Hence (57) is applicable and we find
|f(z) — F(z0)| S 4MMd/re < 4MS/r = & as desired.

In view of Theorem 12 we may abandon the term “normal with
respect to C” which has no historic justification. 1If a family has the
property of the theorem, we say instead that it is locally bounded. Indeed,
if the family is bounded in a neighborhood of each point, then it is
obviously bounded on every compact set. The theorem tells us that
every sequence has a subsequence which converges uniformly on compact
sets if and only if it is locally bounded.

An interesting feature is that Iocal boundedness is inherited by the
derivatives.

Theorem 13, A locelly bounded family of analytic functions has locally
bounded derivatives.

"This follows at onece by the Cauchy represeniation of the derivative.
If € is the boundary of a closed disk in £, of radius 7, then

N Y
T = gni Je e — a7
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Hence |f'(z)] < 4M /r in the concentric disk of radius 7/2 (M is the bound
of |fl on C). We see that the f' are indeed locally bounded.

What is true of the first derivatives is of course also true of higher
derivatives.

4.5. The Classical Definition. If a sequence tends to < there 18 no
great scattering of values, and it may well be argued that for the purposes

- of normal families such a sequence should be regarded as convergent.

This is the classical point of view, and we shall restyle our definition to
eonform with traditional nusage.

Definition 3. A4 family of analytic funclions in a region £ 15 said to be
normal if every sequence contains either o subsequence thal converges uni-
formly on every compact set E C 9, or a subsequence thal tends uniformly
lo = on every compact sel.

We shall show that this definition agrees with Definttion 2 if we take
S to be the Riemann sphere. If that is what we do, then we can also
allow o as a possible value, which means that we may consider families
of meromorphic funetions. There is no need to rephrase the definifion
50 that if*®vers normal families of meromorphic functions, for Definition 2
applies without change.

1t is necessary, however, to prove a lemma which extends Weterstrass's
and Hurwitz’s theorems to meromorphic functions (Theorems 1 and 2).

Lemma. Jf o sequence of meromorphic functions converges in the sense
of spherical distance, uniformly on every compact set, then the limit function
28 meromorphic or identically equal to .

If a sequence of analytic functions converges tn the same sense, then the
limit function 1s either analytic or identically equal to .

Suppose f(z) = lim,. fu(z) in the sense of the lemma. We know
that f(z) is continuous in the spherical metric. 1f f(z0) 5 =, then f(z) is
bounded in a neighborhood of zg, and for large n the functions f, are 7 o«
in the same neighborhood. It follows by the ordinary form of Weier-
strass’s theorem that f(2) is analytic in 2 neighborhood of zp. I f(ze) = =
we consider the reciproecal 1/f(z) which is the limit of 1/f.(z} in the
spherical sense. We conclude that 1/f(z) is analytic near 2, and hence
f(z) is meromorphic. If the f, are analytic and the second case oceurs,
then 1/f must be identically zero by virtue of Hurwitz's theorem, and fis
identically e,
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The lemma makes it clear that Definition 3 is nothing other than
Definition 2 applied to the spherical metric.

It is not true that the derivatives of a normal family form a normal
family., For instance, consider the family formed by the functions
Jn = n(z? — n} in the whole plane. This family is normal, for it is clear
that f, — = uniformly on every compact set. Nevertheless, the deriva-
tives fi = 2nz do not form a normal family, for f/(z) tends to o« for
z¥ 0and toQforz = 0.

By Arzela’s theorem a family of meromorphic functions is normal if
and only if it is equicontinuous on compact sets, for condition (i) is now
trivially fulfilled. The equicontinuity can be replaced by a boundedness
condition. We have indeed:

Theorem 14. A fomidy of analytic or meremorphic functions f is normal
in the classical sense of and ondy if the expressions

_ 2l @)
(58) o) = AR

are locolly bounded,

The geometric meaning of the quantity o(f) is rather evident.
Indeed, by use of the formula in Chap. 1, Sec. 2.4

_ 2| f(z1) — f(z2)|
d(f(z1),f(z2)) = [+ DA + [fz)DR

it is readily seen that f followed by stereographic projection maps an arc
« on an image with length

[, eF@)ad.

If p(f) = M on the line segment between 2, and 2 we conclude that
d(f(21),f(z2)) = M|z; — 2|, and this immediately proves the equicon-
tinuity when p(f) is locally bounded (we challenge the reader to give an
analytic proof).

To prove the necessity we remark first that o(f) = p(1/f) as a simple
calculation shows. Assume that the family & of meromorphiec funetions
is normal, but that the p{f) fail to be bounded on a compact set F.
Consider a serquence of f, € § such that the maximum of p(f.) on F tends

to =,

{nd-

Let f denote the limit function of a convergent subsequence
Around each point of E we can find a small closed disk, contained

in ©, on which either for 1/f iz analytic. If fis analytie it is bounded on
the closed disk, and it follows by the spherical convergence that {f,,} has
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no poles in the disk as soon as k is sufficiently large. We can then use
Weierstrass’s theorem (Theorem 1) to conclude that pf o) = p(f),
uniformly on a slightly smaller disk. Since o(f) is continuous it follows
that p(f,) is bounded on the smaller disk. If 1/f is analytic the same
proof applies to p(1/f,,), which is the same as o(f,,). In conclusion, since
E is compact it can be covered by a finite number of the smaller disks,
and we find that the p(f,,) are bounded on FE, contrary to assurnption.
The contradiction completes the proof of the theorem.

EXERCISES

1. Prove that in any region € the family of analytic functions with
positive real part is normal. Under what added eondition is it locally
bounded? Hent: Consider the functions .

2. Bhow that the functions z», n a nonnegative integer, form a normal
family in |¢] < 1, also in Jz| > 1, but not in any region that contains a
point on the unit circle.

3. If f(2) is analytic in the whole plane, show that the family formed
by all funetions f(kz) with constant & is normal in the annulus r, < ol < 72
if and only if f is a polynomial,

4. If the family § of analytic (or meromorphic) functions is not
norm# in 2, show that there exists a point zo such that ¥ is not normal in
any neighborhood of z,. Hint: A compactness argument.
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6 CONFORMAL MAPPING.
DIRICHLET'S PROBLEM

In the geometrically oriented part of the theory of analytic func-
tions the problem of conformsal mapping plays s dominating role.
Existence and uniqueness theorems permit us to define important

nalytic functions without resorting to analytic expressions, and
gcometric properties of the regions that are being mapped lead to
analytic properites of the mapping function,

The Riemann mapping theorem deals with the mapping of
one simply connected region onto another. We shall give a proof
that leans on the theory of normal families. To handle the more
difficult case of multiply connected regions we shall have to solve
the Dirichlet problem, which is the boundary-value problem for
the Laplace equation.

¥

1. THE RIEMANN MAPPING THEOREM

We shall prove that the unit disk can be mapped conformally onto
any simply connected region in the plane, other than the plane
iteelf. This will imply that any two such regions can be mapped
conformally onto each other, for we can use the unit disk as an
intermediary step. The theorem is applied to polygonal regions,
and in this case an explicit form for the mapping function is
derived.

1.1. Statement and Proof. Although the mapping theorem
was formulated by Riemann, its first successful proof was due to
zn
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P. Koebe.t The proof we shall present is a shorter variant of the original

proof.

Theorem 1. Given any simply connected region Q which is not the whole »
plane, and « point zo € Q, there exists o unigue andlytic function f(z) in Q,
normalized by the conditions f(zo) = 0, f'(z0) > 0, such that f(2) defines o 1

one-to-one mapping of Q onto the disk fw| < 1.

The uniqueness is easily proved, for if f, and f, are two such functions, &
then fif f7*(w)} defines a one-to-one mapping of jiw] < 1 onto itself. We &
know that such a mapping is given by a linear transformation § (Chap. 4, $
Bec. 3.4, Ex. 5). The conditions S(0) = 0, & (0} > 0 imply S(w) = w; ¥

henee f; = fa.

An analytic funetion g(2) in © is said to be univalent if glz) = g(z) B
only for z: = 2, in other words, if the mapping by g is one to one (the §B :
German word schlicht, which lacks an adequate translation, is also in N
common use). For the existence proof we consider the family § formed _'
by all functions g with the following properties: (i} g is analytic and uni- $H
valentin @, (i) |g(z)| < 1in 9, (i) g(z0) = Oandg’(ze) > 0. We contend '
that f is the function in § for which the derivative f'(20) is & maximum, §8
The proof will consist of three parts: (1} it is shown that the family Sis B
not empty; (2) there exists an f with maximal derivative; (3) this f has the W

desired properties.

To prove that § is not empty we note that there exists, by assump- 4

tion, a point & > « notin . Since Qis simply connected, it is possible

to define a single~valued branch of v/z — gin © ; denote it by h(2). Thig i
function does not take the same valie twice, nor does it take opposite )

values. The image of @ under the mapping h covers a disk | — h(20)| < p,
and therefore it does not meet the disk |w + h(z¢)] < p. In other words,
[h(2) + h(z0)| = p for z € 0, and in particular 2|h(zo)] = p. It can now be
verified that the function

() =2 h'(z0)| | Bz} h(2) — (e}
a 4 [h(zo}? W (zo) R(z) F h(zo)
belongs to the family g, Indeed, because it is obtained from the univalent

function k by means of a linear transformation, it is itself univalent.

Moreover, go(z) = 0 and gi(ze) = (o/8) |1 (20)|/|R{z0)|* > 0. Finally,
the estimate

h(z) — h(zo) | _ g 2 4{h(z0)]
o) T ey | — el Ih(zg) el

shows that |g,(2)] £ 1in @

1 A related theorem from which the mepping theorem can be derived had been
proved earlier by W. F. Osgood, but did not attract the attention it deserves,
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E{;he derivatives ¢’ (zv), g ¢ §, have aleast upper bound B which a priori
could be infinite. There is a sequence of functions- g, € § such that
gh(za) — B. By Chap. 5, Theorem 12 the family § is normal. Hence

there exists a subsequence {g.,} which tends to an analytic imit function

uniformly on compact sets. It is clear that |f(z)] = 1in @, f(z0) = .0
ﬁ’nd f'(z0) = B (this proves that B < + =}, If we can sh.ow .that Fis
univalent, it will follow that f is in § and has a maximal derivative at z.

In the first place f is not a constant, for f'(z)) = B > 0. Choose a
point 2; € Q, and consider the functions g:(2) = gz} — gz, g€ G T'hejy
are all # 0 in the region obtained by omitting #; frorr} Q.' By.Hur\_mtz 8
theorem {Chap. 5, Theorem 2} every limit function is either 1df3nt:1(:ally
zero or never zero. bBut f(2) — f(z1) 18 a limit fun_ctlon, and it is not
identically zero. Hence f(2) # f(2z;) for z # 2, and since 2 was arbitrary
we have proved that f is univalent.

It remains to show that f takes every value w with |w| < L. 'Su_pposa
it were true that f(z) # w, for some wo, lwel < 1. Then, since & is simply
connected, 1t is possible to define a single-valued branch of

f(z) — weo

1 — wof(2)

(1) Flz) =

(Recallﬁhat all closed curves in a simply connected regim} are homologous
t0 0. If ¢(2) # 0in Q we can define log ¢{z) by integration of ¢'(z)/¢(2),
and Ve(2) = exp (} log «()).) o

Tt is clear that F is univalent and that IF| £ 1. To normalize it we
form

_ @) F(2) — Fiz)
@) Qi) = ey 1o T

which vanjshes and has a positive derivative at zo. For its value we find,
after brief computation,

[F'eal 14 |
1 —|F@)* 2 v |u]

This is a contradiction, and we conclude that f(z) assumes all values w,
lw] < 1. The proof is now complete. ‘

At first glance it may seem like pure luek that our computation
yields G'(z0) > f'(20). This is not quite so, for the forn{ulas (1) and (2)
permit us to express f(z) as a single-valued analytic function of W = G(z)
which maps |W| < 1 into itself. The inequality |f'(zo}| < [G'(20)] 1s
therefore a consequence of Schwarz’s lernma. - .

The purely topological content of Theorem 1 is important by itself.
We know now that any simply connected region can be mapped topolog-

G (zg) = B> B.
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ically onto a disk (for the whole plane a very simple mapping can be
construeted), and hence any two simply connected regions are topologically
equivalent.

EXERCISES

1. If 2y is real and @ is symmetric with respect to the real axis, prove
by :che uniqueness that f satisfies the symmetry relation f(2) = f(z).
¢ 2 What is the corresponding conclusion if € is symmetric with respect,
to the point z,?

1.2, Boundary Behavior. We are assuming that f(z) defines & con-
formal mapping of a region §! onto another region €. What happens
when 2 approaches the boundary? There are cases where the boundary
behavior can be foretold with great precision. For instance, if © and &
are Jordan regions,{ then f can be extended to a topological mapping of
the closure of © onto the closure of .  Unfortunately, considerations of
space do nof permit us to include a proof of this important theorem (the
proof would require a considerable amount of preparation).

What we can and shsall prove is a very modest theorem of purely
topological content, Let us first make it clear what we mean when we
say that z approaches the boundary of . There are two cases: we may
consider a sequence {z,} of points in ©, or we may consider an arc 2(f},
0 =t < 1, such that all z(¢) are in ©.  We shall say that the sequence or
the are tends to the boundary if the points z, or 2(f) will ultimately stay
away from any point in €. In other words, if z €  there shall exist an
e > 0 and an ny or a & such that [z, — 2| = ¢ for n > n,, or such that
|2(t) ~ 2| = e for all t > {,.

In this situation, the disks of center z and radius e (which may depend
on z) form an open covering of €. It follows that any compact subset
K C @ is covered by a finite number of these disks. If we consider the
Iargest of the corresponding no or o we find that 2. or z(¢) cannot belong
to K for n > ng or t > #. Colloguially speaking, for any compact set
K C 9 there exists a fail end of the sequence or of the are which does not
meet K. Conversely, this implies the original condition, for if ze @ is
given we may choose K to be a closed disk with center z that is contained
in . If the radius of the disk is p the original statement holds for any
e < p.

After these preliminary considerations the theorem we shall prove is
almost trivial:

it ig known, although not so easy to prove, that a Jordan curve (Chap. 3
Sec. 2.1) divides the plane into exactly two regions, one bounded and one unbounded.
The bounded region is called s Jordan region.
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Theorem 2. Let f be a topological mapping of a region @ ondo a region
Q. If {z.} or 2() tends to the boundary of Q, then [f(z,)} or f(z(f)) tends to
the boundary of .

Indeed, let K be a compact set in @', Then f~*(K) is a compact set
in ©, and there exists n, (or #o) such that 2z, (or z{()) is not in f~(K) for
n > ng (or ¢ > ). But then f(2,) [or f(z(#))] is not in K.

Although the theorem is topological, it is the application to conformal
mappings that is of greatest interest to us.

1.3. Use of the Reflection Principle. Stronger statements become
possible if we have more information. We are mainly interested in simply
connected regions and may therefore assume that one of the regions is a
disk. With the same notation as in Sec. 1.1, let f{z) define a conformal
mapping of the region Q onto the unit disk with the normalization f(z,) = 0
(the normalization by the derivative is irrelevant). We shall derive
additiona] information by use of the reflection principle (Chap. 4,
Theorem 26).

Let us assume that the boundary of € containg a segment v of a
straight line. Because rotations are unimportant we may as well suppose
that ¥ Hes on the real axis; let it be the interval ¢ < & < b.  The assump-
tion %‘.:olves & significant simplification only if the rest of the boundary
stays away from y. For thig reason we shall strengthen the hypothesis
and require that every point of v has a neighborhood whose intersection
with the whole boundary 88 is the same as its intersection with 7. We
gay then that « is a free boundary arc.

By this assumption every point on v is the center of a disk whose
intersection with 89 is its real diameter. Tt is clear that each of the half
disks determined by this diameter is entirely in or entirely outside of £,
and at least one must be ingide. If only one is inside we call the point a
one-sided boundary point, and if both are inside it is a two-sided boundary
point. Because v is connected all its points will be of the same kind, and
we speak of a one-sided or a two-sided boundary arc.

Theorem 3. Suppose that the boundary of a simply connected region
contains u line segment v as a one-sided free boundary arc.  Then the func-
ton f(2) which maps Q onto the undt disk can be extended to o function which
is analytic and one to one on Q\J 4.  The tmage of v is an arc ¥’ on the unit
cirele,

For two-sided arcs the same will be true with obvious modifications,
For the proof we consider a disk around =z € 4 which is so small that
the half disk in § does not contain the point 2y with f(z,) = 0. Then




226 COMPLEX ANALYSIS

log f(z) has a single-valued branch in the half disk, and its real part tends
to 0 as z approaches the diameter, for we know by Theorem 2 that |f(z)|
tends to 1. It follows by the reflection prineiple that log f(z) has en
analytic extension to the whole disk. Therefore log f(2), and consequently
f(2), ig analytic at zy. The extensions to overlapping disks must coincide
and define a function which is analytic on @ U «.

We note further that f(z)} ¢ Gony. Indeed, f'(x0) = ¢ would imply
that f{xo) were a multiple value, and the two real radii from x, would be
mapped on arcs that form an angle < «; this is clearly impossible. If,
for instance, the upper half disks are in ©, then .

dlog |fl/ay = —aarg f/ax <0

on v, and arg f moves constantly in the same direetion. This proves
that the mapping is one to one on +,

The theorem can be generalized to regions with free boundary arcs
on g circle.

1.4. Analytic Arcs. A real or complex function ¢(t) of a real variable t,
defined on an interval a < t < b, is said to be real analytic (or analytic in
the real sense) if, for every f, in the interval, the Taylor development
() = o(te) + " (t)(t — to) + L' (t)(f — t)® + - - - converges in some
interval (to — p, fo + o), p > 0. But if this is s0o we know by Abel's
theorem that the series is also convergent for complex values of ¢, as long
as |t — to] < p, and that it represents an analytic function in that disk.
In overlapping disks the functions are the same, for they coincide on a
segment of the real axis. We coneclude that ¢(f) can be defined as an
analytic funetion in a region A, symmetrie to the real axis, which contains
the segment (a,b).

In these circumstances we say that ¢(f) determines an analytic arc.
It is regular if ¢’(t) # 0, and it is a simple arc if ¢({;) = ¢(f2) only when
t; = tz.

We shall assume that the boundary of § contains a regular, simple,
analytic arc 4, and that it is a free one-sided are. The definition could
be modeled on the previous one, but to avoid long explanations we shall
assume offhand that there exists a region A, symmetric to the interval
(a,b), with the property that «(f) € @ when ¢ lies in the upper half of A, and
that (2} lies outside @ for ¢ in the lower half.

If f(z) is the mapping function with f(z) = 0, and if we take care
that () # 2o in A, then the reflection principle tells us that log f((8)),
and hence f(¢(t)), has an analytic extension from the upper to the lower
half of A. For a real ¢ € (g,b) we know further that ¢'(fo) > 0. There-
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fore ¢ has an analytic inverse ¢! in a neighborhood of (%), ard it follows
by composition that f(z) is analytic in that neighborhood.

- Theorem 4. If the boundary of & contains o free one-sided analytic arc

~, then the mopping function has an analytic extension lo @\ v, and s
mapped on an are of the unit circle,

We trust the reader to make the last statement more precise and to
complete the proof.

2. CONFORMAL MAPPING OF POLYGONS

When @ is a polygon, the mapping problem has an almost explicit sohution.
Indeed, we shall find that the mapping function can be expressed through
a formula in which only certain parameters have values that depend on
the specific shape of the polyzon.

)

2.1. The Behavior at an Angle. We assume that @ is a bounded
simply eonnected region whose boundary is a closed polygonal line with-
out self-intersections. Let the consecutive vertices be z;, . . . , z, in
positi\v cyclic order (we set 2,41 = #1). The angle at 2z is given by the
value of arg (2,1 — 2}/ (241 — 2) between 0 and 2x. We shall denote
it by o, 0 < ax < 2. It is also convenient to introduce the oufer angles
Bir = (1 —aw)r, —1 < B <1. Observe that ;4 + - - + 8, = 2.
The polygon is convex H and only # all 8, > 0.

We know by Theorem 3 that the mapping function f(2) can be
extended by continuity to any side of the polygon (that is, to the open
line segment between two consecutive vertices), and that each side is
mapped in a one-to-one way onto an are of the unit circle. We wish to
show that these arcs are disjoint and leave no gap between them.

To see thiz we consider a cireylar sector S, which is the intersection
of @ with a sufficiently small disk about z. A single-valued branch
of ¢ = (z — z)Y= maps S; onto a half disk 8. A suitable branch
of z + ¢ has its values in @, and we may consider the function
g() = flz + =) in 8. It follows by Theorem 2 that [g(t)} — 1 as [
approaches the diameter. The reflection principle applies, and we con-
clude that g(¢)} has an analytic continuation to the whole disk. In
particular, this implies that f(z) has a limit wy = €' as 2 — z;, and we
find that the ares that correspond to the sides meeting at 2z, do indeed
have a common end point. Since arg f(z) must increase as 2 traces the
boundary in positive direction, the arcs do not overlap, at least not in a
neighborhood of w,.  If we take into account that f maps the boundary
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FIG. 28, Conformal mapping of a polygon,

on a curve with winding number 1 about the origin, it can easily be eon-
cluded that all the arcs are mutually disjoint. In other words, f can be
extended to a homeomorphic map of €~ onto the closed unit disk, the
vertices z; go into points wy, and the sides correspond to the ares between
these points (Fig. 29).

2.2. The Schwarz-Christoffel Formule., The formula we are looking
for refers not to the funetion f, but to its inverse function, which we shall
denote by F.,

Theorem 5.  The functions z = F(w) which map || < 1 conformally onto
polygons with angles car(k = 1, . . . , n) are of the form

@) Py = € [ T1 G — ws dw + ¢
k=1

where By = 1 — oz, the w; are potnis on the unil civrcle, and C, C' are com-
plex constants.

Because the function ¢(¢) = f(z:x + =) considered in the last para-
graph of 2.1 is analytie at the origin, it hag a Taylor development

Fer+ (o) = w Y angm.

w=1
Here a, # 0, for otherwise the image of the half disk S; could not be
contained in the unit disk. Therefore the series can be inverted, and on
setting w = f{z, + =) we obtain

w0

bo(w — wek™

{ =

m=}
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with & # 0, the development being valid in s neighborhood of .. We
raise to the power o and find, in terms of the inverse function F,

F(w) — z = (w0 — wy )Gy (w)

where (). is analytic and # 0 near w,. It follows by differentiation that
F/(w)(w — we)® is analytic and # 0 at wy, and therefore the produet
) H(w) = F'(w) [ (0 — wi)t

k=1
is analytic and # 0 in the closed unit disk.

We claim that H(w) is, in actual fact, a constant. For this purpose
we examine its argumeni when w = ¢% lies on the unit circle between
wy = €% and wyy, = €%, We know that arg F'(e¥) equals the angle
between the tangent to the unit circle at ¢ and the tangent to its
image at F(e’); with an abbreviated notation we express this by
arg I'' = arg dF" — arg dw. But arg dF is constant because F describes
a straight line, and arg dw = 6 + =/2. The factor w — w can be written
e — e’ = 24eit+f)2 gin 1(f -- (), and hence its argument is #/2 plus 5
constant (this is also evident geometrically). When we add the argu-
ments of all factors on the right-hand side of (4) we find that arg H(w)

diﬂersﬁby a constanl from —6 + (E ,Gk) -8/2 = 0. Thus we conclude
1

that arg H(w) is constant between wy, and wy,y, and sinee it is continuous
it must be constant on the whole unit cirele. The maximum principle
permits us to conclude that arg H(w) = Im log H(w) is constant inside
the unit eirele, and so is consequently H(w).

We have now proved that

ki3
. Py = C T (w — wa)
B=1
and formula (3) follows by integration.

We remark that a linear transformation of the unit cirele permifs us
to place three of the points wy, for instance, w;, ws, ws, in preseribed
positions. T'or n = 3 we see that the mapping function depends only
on the angles, except for trivial variable transformations; this reflects the
fact that triangles with the same angles are similar., For n > 3 the
remaining constants wy, . . . , Ws, or their arguments 6, are called the
accessory parameters of the problem. It is only in rare cases that they can
be determined other than by numerical computation.

If we give arbitrary values to the 6, it is guite easy to verify that a
function of the form (3) maps the unit circle on a closed polygonal line,
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but usually we are unable to tell whether it will intersect itself or not,
If it does not, it is not difficult to show that F(z), as given by (3), vields
& one-to-one mapping onto the inside of the polygonal line (the precige
proof makes use of the argument principle).

Formula (3) is known as the Schwars-Christoffel formule. Another
version of the same formula serves to map the upper half plane onto the
inside of a polygon. The mapping function, from Imw > 0 to 0, can
now be written in the form

n—1
(5) Fw) = ¢ [“]] @ — s dw + ¢
k=1

where the & are real. The last exponent 8, does not appear explicitly in
the formula, but it is determined by 8, = 2 — B+ - - + Buy), and £R
like the other exponents it is subject to the condition —1 < Bo<1 1t BB
then follows that the integral (5) converges for w = o, and the point at
@ will correspond to a vertex with angle apm, o =1 — ., If B, =0
the vertex is only apparent, and the polygon reduces to one with n — 1
sides.

EXERCISES

1. Show that the £ in (3) may be allowed to become = —1. What
is the geometric interpreta‘tion?

2. If a vertex of the polygon is allowed to be at «, what modification
does the formula undergo? 1If in this context 8, = 1, what is the polygon
like?

3. Bhow that the mappings of a disk onto a parallel strip, or onto a
half strip with two right angles, ean be obtained as special cases of the
Schwarz-Christoffel formula.

4. Derive formula (5), either directly or with the help of (3).
5. Show that

Fw) = A 1 — ) dy
maps |w] < 1 onto the interior of a regular polygon with n sides.

2.3. Mapping on a Rectangle. In caseQisa rectangle we may choose
T =0,22=1,23 = p > 1in (6). The mapping function will thus be
given by

fw dw

© Vw@w — 1w — p)

Flu) =
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which is an elléptic inlegral. To be unambiguous we decide that the values
of Vw; Vi — 1, and v/w — p shall lie in the first quadrant. For a
detailed study of the mapping, let us follow F(w) as w traces the real

_.axis. When w is real, each of the square roots is either positive or purely

imaginary with a positive imaginary part (save for the point where the
square root is 0). As 0 < w < 1 there are one real and two imaginary
square roots. Therefore F(w) decreases from 0 to a value —K where

1 di
® e (= e

For 1 < w < p there is only one imaginary square root. It follows that
the integral from 1 to w is purely imaginary with a negative imaginary
part. Hence F(w) will follow a vertical segment from — K to - K — K,

. f* dt )
K= ﬁ VI =D — D

For w > p the integrand is positive, and F{w) will trace a horizontal
segment in the positive direction. How far does it extend? Since the
Image is to be a rectangle, it must end at the point —7K’, but we prefer a
direct verification. One way Is to express the length of the segment by
the&integral

® dt
Fva=ve=s
and to show by the change of integration variable t = (p — w)/(1 — )

that the integral transforms to (6). It is easier, however, to observe that
Cauchy's theorem vields

f«n dt -0
. A= — )

for the integral over a semicircle with radius B tends to 0 as B — .
The vanishing of the real part implies the equality of the horizontal seg-
ments, and from the vanishing of the imaginary part we deduce that
— % < w < 0is mapped on the segment from —7K' to 0. The rectangle
is completed.

It is often preferable to use a formula which reflects the double
symmetry of the rectangle. The vertices can be made to correspond to
points +1 and +1/k. Since a constant factor does not matter we can
choose the mapping to be given by

w0 dw |
b VI — )0 — Kk

" F(w) =
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FlG. 30,

and this time we agree that 4/1 — @? and v/1 — E%2? shall have positive
K K

real parts. L

Tt 18 seen that the rectangle will have vertices at —

% + <K', — %{ + K’ where

1 di
K =
/5 VI =B - k)
dt

1+
/ VE- DA = B

R =

The image of the upper half plane is the shaded rectangle By in Fig.
50.  We denote the inverse function of F by w = f(z); it is defined in Ry
and can be extended by continuity to a one-to-one mapping of the closed
rectangle onto the closed half plane (with the topology of the Ricimann
sphere). Observe that 2 = K’ corresponds to o,

The reflection principle allows us to extend the definition of S to the
adjacent rectangles B, and Rs, namely by setting f(z) = f(z) for z € Kx
and f(2) = f(IK — 2) for z € R.. Similarly we can pass to B; either from
Rty or Fy; the extension is given by f(2) = f(K — z). The process of
reflection can ebviousty be continued until f(z) is defined as a meromorphic
function in the whole plane. It is perhaps even more convenient to
define the extension by periodicity, for we find that the extended funetion
must satisty f(z + 2K) = f(2), f(z + 20K") = f().

We have shown that the inverse function of the elliptic integral (7)
is & meromorphic function with periods 2K and 2%K’. Sueh functions are
known as elliptic functions. The connection between elliptic integrals

A TR b o B AP bt b e 1
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and elliptic functions was discovered, but not published, by Gauss; it was
rediscovered by Abel and Jacobi.

~EXERCISES

1. Prove that formula (7) gives F(=) = (K",
2. Show that K = K'if and only if k = (/2 — 1)2
3. Bhow that f(z), f(z + K), and f(z 4 ¢K’) are even functions.

2.4. The Triangle Functions of Schwarz. The upper half plane is
mapped on a trisngle with angles cur, aor, azr by

Foo) = [ v i(w — 1) du.

There are no aceessory parameters, ss we have already noted.

The inverse funetion f(z) can sgain be extended to neighboring
triangles by reflection over the sides. This process is particularly inter-
esting when it leads, as in the case of a rectangle, to a meromor-
phic function. In order that this be so it is necessary that repeated
reflections across sides with a common end point should ultimately lead
back to the original triangle in an even number of steps.  In other words,
the gngles must be of the form #/n4, w/ns, w/n; with integral denominators.
Elementary reasoning shows that the condition

1 1 1

m e T
is fulfilled only by the triples (3,3,3), (2,4,4), and (2,3,6). They cor-
respond to an equilateral triangle, an isosceles right triangle, and half an
equilateral triangle.

In each case it is easy to verify that the reflected images of the
triangle fill out the plane, without overlapping and without gaps. This
shows that the mapping functions are indeed restrictions of meromorphic
functions, known as the Schwarz triangle functions.

The reader is urged to draw a picture of the triangle net in each of
the three cases. He will then observe that each triangle function has a
Pair of periods with nonreal ratio, and is thus an elliptic function. As an
exercise, the reader should determine how many triangles there are in a
Parallelogram spanned by the periods.

=1

3. A CLOSER LOOK AT HARMONIC FUNCTIONS

We have already discussed the basic properties of harmonic functions in
Chap. 4, Bec. 6. At that time it was expedient to use a rather erude
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definition, namely one that requires all second-order derivatives to be
continuous. 'This was sufficient to prove the mean-value property from
which we could in turn derive the Poisson representation and the refiec-
tion principle. We shall now show that a more satisfactory theory is
obtained if we make the mean-value properiy rather than the Laplace
equation our starting point.

In this connection we shall also derive an important theorem on
monotone sequences of harmonic functions, usually referred to as
Harnack’s principle.

3.1. Functions with the Mean-value Property. Let u(z) be a real-
valued continuous function in a region . We say that v satisfies the
mean-value property if

(8) w(zo) = 2%; /: " w(zo + re’) do

when the disk | — 2| £ ris contained in 2. We showed in Chap. 4 that
the mean-value property implies the maximum principle. Actuaslly,
closer examination of the proof shows that it is sufficient to assume that
(8) holds for sufficiently smmall r, r < r;, where we may even allow ry to
depend on z. We repeat the conclusion: a continuous function with
this property cannot have a relative maximum (or minimum) without
reducing t0 a constant.

We have shown earlier that every harmonic function satisfies the
mean-value condition, and we shall now prove the following converse:

Theorem 6. A continuous function u(z) which satisfies condition (8) is
necessarily harmonie.

Again, the condition need be satisfled only for sufficiently small r.
H v satisfies (8), so does the difference between u and any harmonic fune-
tion. BSuppose that the disk |¢+ — 2] = p i contained in &, the region
where % is defined. By use of Poisson’s formula (Chap. 4, Sec. 6.3) we
can construct a function #(2) which is harmonic for |z — #| < p, con-
tinuous and equal to w(2) on |z — 2 = p. The maximum and minrimum
principle, applied to « — v, implies that «(2) = 2(z) in the whole disk, and
consequently u(z) is harmonic.

The implication of Theorem 6 is that we may, if we choose, define a
harmonic function to be a continuous function with the mean-value
property. Such a function has automatically eontinuous derivatives of
all orders, and it satisfies Laplace’s equation.

An analogous ressoning shows that even without the condition (8)
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the assumptions about the derivatives can be relaxed to a considerable
degree. Suppose merely that u(z) is continuous and that the derivatives
d%u/8z?, 0%u/8y* exist and satisfy Au = 0. With the same notations as
above we show that the function

V=u—v+elz ~ zp?
e > 0, must obey the maximum principle. Indeed, if ¥ had a maximum

the rules of the caleulus would yield #*V/8z® £ 0, 82V /3y® < 0, and
henee AV £ 0 at that point.  On the other hand,

AV = Au — Av 4 28 = 2 > 0.

The contradiction shows that the maximum principle obtains. We can
thus conclude that w — v + ez — 20)? = ¢ in the disk |z — zl £ p.
Letting e tend to zero we find u £ v, and the opposite inequality can be
proved in the same way. Hence u is harmonie, 1

3.2. Harnuck’ Principle. We recall that Poisson’s formula (Chap. 4,
Sec. 6.3) permits us to express a harmonic function through its values on
a circle. To fit our presenl needs we write it in the form

1 h2r p -2
©) WD) = 5 | s g 1) d0

where [2] = r < pand v is assumed to be harmonic in |2| < p (or barmonie
for |z| < p, continuous for |} = p). Together with the second of the
elementary inequalities

— 2 2
10 Pl g P b ¥
(10) pHT T e — 2P T p—r

formula (9) yields the estimate

1
- 0@ < 52257 [ fuGee)] do

If it is known that u(pe®®) = 0 we can use the first inequality (10) as well,
and obtain a double estimate

Llp—1 lptr
2M+T[ wdd S u) S 507 TL u do.

But the arithmetic mean of u(pe®) equals +(0), and we end up with the
following upper and lower bounds:

< £t :u@_

p—7rT
(11) ST - u(0) £ ) = -

T This proof is due to C. Carathéodory.
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This is Harnack’s inequality; we emphasize that it is valid only for
positive harmonic functions,

The main application of (11) is to series with positive terms or,
equivalently, increasing sequences of harmonic functions. It leads to a
powerful and simple theorem known as Harnack's principle:

Theorem 7. Consider a sequence of functions u.(z), each defined and
harmonic in o certoin region §,.  Let Q be o region such that every point in
Q has a neighborhoed conteined in oll but a finite number of the 5., and
assuine moreover that in this neighborhood w,(2) S wuny1(2) a5 soon as n is
sufficiently large. Then there are only two possibilities: either w.(z) fends
uniformly fo + oo on every compact subset of @, or u.(z) tends fo a harmonic
limit function w(z} in Q, uniformly on compact sets.

The simplest situation occurs when the functions «,.(2) are harmonic
and form a nondecreasing sequence in . There are, however, applica-
tions for which this case is not sufficiently general.

For the proof, suppose first that Hm wu.(z;}) = = for at least one

—r 2

point z¢ € 2. By assumption there exist » and m such that the functions

ux{2) are harmonic and form a nondecreasing sequence for |z — 2] < r

andn 2z m. 1f the left-hand inequality (11) is applied to the nonnegative

functions u, — w,, it follows that w.(z) tends uniformly to « in the disk

|z — z¢) £ 7/2. On the other hand, if lim u.(z) < «, application of
Fih o0

the right-hand inequality shows in the same way that u.(z) is bounded on
le¢ — zo| < 7/2. Therefore the sets on which lim w.(z) is, respectively,
finite or infinite are both open, and since  is connected, one of the sets
must be empty. As soon as the Hmit is infinite at a single point, it is
hence identically infinite. The uniformity follows by the usual com-
paciness argument,

In the opposite case the limit function u{z) is finite everywhere.
With the same notations as above wa5(2) — un(z) £ 3(uniofze) — tn(20)
forlz — zo) £ r/2andn + p = n = m. Hence convergence at z, implies
uniform convergence in a neighborhood of z,, and use of the Heine-Borel
property shows that the convergence is uniform on every compact sel.
The harmonicity of the limit function can be inferred from the fact that
u{z) can be represented by Poisson’s formula.

EXERCISES

1. If Fis a compact sct in a region §, prove that there exists a constant
M, depending only on E and €, such that every positive harmonic function
u(2) in © satisfies w(zz) = Mu(z:) for any two points 2y, 2, € I,
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2. For a fixed region, prove that the analytic functions with positive
real part form a normal family. '

3. With E and @ as in Ex. 1, show that the oscillation on ¥ of any
harmonic¢ function in £ is less than a fixed constant times the oscillation

on Q.

4. THE DIRICHLET PROBLEM

The most important problem in the theory of harmenic functions is that
of finding a harmonic function with given boundary values; it is known
as the Diérichlet problem. Poisson'’s formula solves the problem for a
disk, but the case of an arbitrary region is much more difficult. Many
methods of selution are known, but none as simple and as suitable for
presentation in an elementary text as the method of O. Perron, which is
basced on the use of subharmonic functions.

4.1, Sabharmonie Functions. Laplace’s equation in one dimension
would have the form d2u/dx® = 0. The harmonic functions of one var-
iable would thus be the linear functions w = ax + b. A function #{(x) is
said to be convex if, in any interval, it is at most equal to the linear fune-
tion u{;) with the same values as ¢(z) at the end points of the interval.

If this situation is generalized to two dimensions, we are led to the
class of subharmonic functions. Linear functions correspond to harmonic
functions, intervals correspond to regions, and the end points of an
interval correspond to the boundary of the region. Accordingly, a func-
tion v{z) of one complex or two real variables will be called subharmonic
if in any region »(2) is less than or equal to the harmonic function u(z)
which coincides with »(z) on the boundary of the region. Since this
formulation requires that we can solve the Dirichlet problem it is prefer-
able td replace the condition by the simpler requirerent that »(z) < u(z)
on the boundary of the region implies (2} £ w(e)} in the region.

An equivalent but in some respects simpler formulation is the
following:

Definition 1. A4 confinuous real-valued funciion v(z), defined in a region
Q, is said to be subkarmonic in Q i for any harmonic function u(z) in a
region @ (C @ the difference v — u safisfies the maximum principle in 2.

The condition means that v — u cannot have a maximum in & with-
out being identically constant. In particular, ¢ itself can have no maxi-
mum in . It is important to note that the definition has local character:
if v is subbarmoric in 2 neighborhood of each point z € 2, then it is sub-
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harmonic in £.  The proof is immediate. A function is satd to be sub-
harmonic at a point 2, if it is subharmonic in a neighborhood of =,
Hence a function is subharmeonic in a region if and only if it is subharmonic
at all points of the region.

A harmonic funetion is trivially subharmonic.

A sufficient condition for subharmonicity is that » has a positive
Laplacian. In fact, if » — « has a maximumn it follows by elementary
calculus that 82/0z%(v — u) = 0, 0%/9y%(v — u) = 0 at that point; this
would imply Ay = A{v — %) = 0. The condition is not necessary, and
as a matter of fact a subharmonic function need not have partial deriva-
tives. If the function has continuous derivatives of the first and second
order, it can be shown that the condition Av = 0 i8 necessary and suf-
ficient. Since we shall not need this property, its proof will be relegated
to the exercise section. The condition yields a simple way to ascertain
whether a given elementary function of z and y is subharmonic.

We show now that subharmonic functions can be characterized by
an inequality which generalizes the mean-value property of harmonic
functions:

* . Theorem 8, A continuous function v(z) is subkarmonic in Q if and only

I it satisfies the inequality

1 2 ,
(12) v(ze) = 5 ﬁ v(ze + rei) d
for every disk |z — z| £ » contained in Q.

The sufficiency follows by the fact that (12), rather than the mean-
value property, is what is actually needed in order to show that » cannot
have a maximum without being constant. Bince v — wu satisfies the same
inequality, it follows that » is subharmonic.

In order to prove the necessity we form the Poisson integral P.(z) in
the disk jz — 2¢| < r with the values of » taken on the circumference
|z — 2ol = 7. Ifwissubharmonic, the function» — P, can have no max-
imum in the disk unless it is constant. By Schwarz’s theorem (Chap. 4,
Theorem 25) v — P, tends to 0 as 2 approaches a point on the circumfer-
ence. Hencev — P, hasa maximum in the closed disk. If the maximum
were positive it would be taken at an interior point, and the function
could not be constant. This is a contradiction, and we conclude that
v £ P,. TFor 2z = g, we obtain v{e¢) < P.(2z), and this is the inequality
(12).

We list now a number of elementary properties of subharmonic
functions;
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1. If v is subharmonde, so is kv for any constant k = 0,

2. If v, and ve are subharmonic, so is v1 + va.

These are immediate consequences of Theorem 8.  The next property
follows most easily from the original definition.

3. If vy and v» are subharmonic in £, then v = max (v1,v2) s likewise
subharmonic in .

The notation is {0 be understood in the sense that #(2) is at each point
equal to the greater of the values ¢1(2) and vy(2). The continuity of » is
obvious. Suppose now that v — « has a maximum at 2, € 2" where v is
defined and harmonic in . We may assume that v(z0) = v1{z;). Then

v1(2) — w(2) < v(z)— u(®) = vz — ulze) = v1{ze) — u{zc)

for zef¥. Hence #1 — u is constant, and by the same inequality v — w
must also be constant. It is proved that v is subharmonic.

Let A be a disk whose closure 18 contained in €, and denote by P, the
Poissomintegral formed with the values of v on its circumference. Then
the following is true:

4, If v is subkarmondc, then the function v’ defined as P, in A and as v
outside o_&A s also subharmonic.

The bontinuity of »* follows by the theorem of Schwarz. We have
provgd that v = P, in A, and hence ¢ = ¢ throughout ©. It is clear
that ¢ is subharmonic in the interior and exterior of A. Suppose now
that »* — « had a maximum at a point zp on the circumference of A, It
follows at once that v — u would also have a maximum at z,. Hence
¢ — u would be constant, and the inequality

v—u S —u = (2) — u(z) = v(2) — u(20)

shows that ¢ — o is likewise constant. We conclude that ¢ is
subharmonic,

EXERCISES

1. Show that the functions |z|, |z*(a = 0), log (1 + §2|*) are sub-
harmonic.

2. If f(2) is analytic, prove that {f(2){*(e = 0} and log (1 + |f(2)[*
are subharmonic.

3. If » is continuous together with its partial derivatives up to the
second order, prove that ¢ is subharmonic If and only if &v = 0. Hint:
For the sufficiency, prove first that » 4 e2?, ¢ > 0, is subharmonie. For
the necessity, show that if Av < 0 the mean value over a circle would be a
decreasing function of the radius.
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4. Prove that a subharmonic function remains subharmonic if the
independent variable is subjected to a conformal mapping.

5. Formulate and prove a theorem to the effect that a uniform limit
of subharmonic functions is subharmonic. '

4.2. Solution of Dirichlet’s Problem. The first to use subharmonie
functions for the study of Dirichlet’s problem: was O. Perron. His
method is characterized by extreme generality, and it is completely
elementary.

We consider a bounded region § and a real-valued function f(¢) defined
on its boundary T' {for clarity, boundary points will be denoted by {).
To begin with, f{{) need not even be continuous, but for the sake of
simplicity we assume that it is bounded, |f(¥)| = M. With each f we
associate a harmonic function %{z) in €, defined by a simple process which
will be detailed below. If fis continuous, and if @ satisfies certain mild
conditions, the corresponding futiction » will solve the Dirichlet problem
for £ with the boundary values f.

We define the class B{f) of functions ¢ with the following properties:

(a) v is subharmenic in £;

{b) ﬁr—n;v(z) Sf foralltel.

The precise meaning of (b) is this: given € > 0 and a point { € I' there
exists a neighborhood & of ¢ such that v(2) < f({) + ein AM Q. The
class B{f) is not empty, for it contains all constants £ —M. We prove:

Lemma 1. The function u, defined as u(z) = Lu.b. v(z) for v € BS), i5
karmonic in Q.

In the first place, each v is £ M in & This is a simple enough conse-
guence of the maximum principle, but because of its importance we want
to explain this point in some detail. For a given ¢ > 0, let £ be the set
of points z € Q for which #{z) = M 4 e The points 2 in the complement
~F are of three kinds: (1) points in the exterior of 2, (2) points on T,
(3) points in Q with »(2) < M + = In case (1) z has a neighborheod
contained in the exterior, in case (2) there is a neighborhood A with
v < M + ¢in AMQ, by property (b), and in case (3) there exists, by con-
tinuity, & neighborhood in @ with v < M + & Hence ~E is open, and
E is closed. Moreover, since @ is bounded, E is compact. If F were
not void, » would have a maximum on F, and this would also be a maxi-
mum in €. This is impossible, for because of (b) ¢ cannot be a constant
> M. Hence E is void for every e, and it follows that» < 3 in Q.

Consider a disk & whose closure is contained in @, and & point z; € A.
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There exists a sequence of functions v, € B([) such that lim 2.(20) = u(zo).
. T

Set V, = max {py,vz, . . . ,tm). Then the ¥, form a nondecreasing
sequence of functions in B(f). We construet V., equal to V, outside of
A and equal to the Poisson integral of V, in A. By property (4) of the
preceding section the V), are still in $B(f). They form a nondecreasing
sequence, and the inequality v.(z0) £ Val{z0) = V,.(20) £ u(zo) shows that
limy Vi(ze) = u(ze). By Harnack’s principle the sequence {V;} con-

verges to a harmonic limit function U in A which satisfies U = » and
Ulzo) = ulzo).
Suppose now that we start the same process from another point 2; € A,
We select w0, € B(F) 50 that lim w.(z1) = u(z), but this time, before pro-
s e

ceeding with the construction, we replace w, by @, = max (v,,w,}). Set-
ting W, = max (@1, . . . i) we construct the corresponding sequence
{W.} with the aid of the Poisson integral and are led to a harmonic limit
functign U; which satisfies U < Uy £ v and Uy(z1) = u(zr). 1t follows
that I — U, has the maximum zero at z. Therefore U is identically
equal to {73, and we have proved that u(z1) = U(zi) for arbitrary z: € A.
It follows that « is harmonic in any disk A and, consequently, in all of Q.

will now investigate the circumstances under which u solves the
Dirichlet problem for continuous f. We note first that the Dirichlet
probiem does not always have a solution. For instance, if @ is the
punctured disk 0 < }z| < 1, consider the boundary values f(0) = 1 and
f@) = 0 for |¢| = 1. A harmonic function with these boundary values
would be bounded and would, hence, present a removable singularity at
the origin. But then the maximum principle would imply that the func-
tion vanishes identically and thus could not have the boundary value 1 at
the origin, It follows that no solution can exist.

It is"also easy to see that a solution, if it exists, must be identical with
w. In fact, if U is a solution it i first of all clear that U € B(f), and
hence w = U/. The opposite inequality « = U follows by the maximum
principle which implies v £ U for all v € B(f).

The existence of a solution can be asserted for a wide class of regions.
Generally speaking, the solution exists if the complement of € s not too
“thin” in the neighborhood of any boundary point. We begin by proving
a lemma which, on the surface, seems to have little to do with the notion
of thinness,

Lemma 2. Suppose that there exists a harmonic function w(z) in @ whose
continuous boundary values w({) are stricily positive excepl af one point
to where w(to) = 0. Then, if f) = continuous at ¢o, the corresponding
Function v determined by Perron’s method satisfies lim w(2) = f($o)-

2=
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‘The lemma will be proved if we show that Tim u(z) < f(ty) + ¢ and
2o

lim w(2) 2 f(te) — ¢ for all e > 0. We are still assuming that Q is

e

bounded and |f(?)| = M.

Determine a neighborhood A of {; such that |f(;) — Fto)| < ¢ for
teas Inf — AMQthe function w(z) bas a positive minimum we. We
congider the boundary values of the harmonic function

W) = 160 + ¢+ 22 — s,

For { € A we have W) = f(te) + ¢ > f(¢), and for ¢ outside of A we
obtain W{{) =2 M 4 e > f(¢). By the maximum principle any function
v € B(f) must hence satisfy v(z) < W(z). It follows that u(z) £ W(z)

and consequently Fﬁ;i ul{z) £ W{to) = f(te) + ¢ which is the first

inequality we set out to prove.
For the second inequality we need only show that the function

Ve =160 — e = 22 ar 4 g

is in B(f). For t e A we have V() £ f(¢n) — 2 < f(©), and at all other

boundary points V() £ —M — ¢ < f({). Since V is harmonic it

belongs to B(f) and we obtain u(z) = V(2), lim u(z) = V(o) = flto) — =
o

This completes the proof. !

The function w(z) of Lerma 2 is sometimes called a barrier at the point
{r. Clearly, we can now say that the Dirichlet problem is solvable pro-
vided that there is a barrier at each boundary point. It remains to
formulate geometrie conditions which imply the existence of a barrier.
Actually, necessary and sufficient conditions of a purely geometric char-
acter are not known, but it is relatively easy to find sufficient conditions
with a wide range of applicability.

To begin with the simplest case, suppose that @\ I' is contained in
an open half plane, except for a point ¢ which lies on the boundary line.
If the direction of this line is « (with the half plane to the left), then
e(z) = Im e ia(z — py) is a barrier at &,

More generally, suppose that ¢, is the end point of a line segment all
of whose points, except {, lie in the exterior of @.  If the other end point
is denoted by {1, we know that a single-valued branch of

\/z—;;
Z—;’l
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can be defined outside of the segment. With a proper determination of

the angle o the function
Im [e—"“ \}z = i'o]

Z—_(’l

is eagily seen to be a barrier at {o.

This Is not the strongest result that ean be obtained by these methods,
but it is sufficient for most applications. We shall therefore be content
with the following statement.:

Theorem 9. The Divichlet problem can be solved for any region @ such
that each boundary point is the end point of a line segment whose other
points are exterior fo Q.

The hypothesis iz fulfilled if © and its complement have a common
boundary consigsting of a finite nurmber of simple closed curves with a
tangent* at each poini. Corners and certain types of cusps are also
permissible.

5. CANONICAL MAPPINGS OF MULTIPLY
CONNECTED REGIONS

Riemann’s mapping theorem permits us to conclude that any two simply
connected regions, with the exception of the whole plane, can be mapped
conformally onto each other, or that they are conformally equivalent.
For multiply connected regions of the same connectivity this is no longer
true. Instead we must try to find a system of canondcal regions with
the property that each multiply connected region is conformally equiv-
alent to one and only one canonical region. The choice of canonical
regions is to a certain extent arbitrary, and there are several types with
equally simple properties.

In order to stay on an elementary level we will limit ourselves to the
study of regions of finite connectivity. We shall find that the basic
step toward the construction of canonical mappings is the introduction
of certain harmonic functions with a particularly simple behavior on the
boundary. Of these the harmonic measures are related only to the region
and one of it® contours, while the Green’s function is related to the region
and an interior point.

t The best result that can be proved by essentially the same method is the follow-
ing: The Dirichlet problem can be solved for any region whose complement is such that no
component reduces to a point. From this proposition an independent proof of the
Riernann mapping theorem can easily be derived.
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5.1. Harmonic Measures. When studying the conformal mappings of
a region @ we can of course replace @ by any region known to be con-
formally equivalent to £, that is to say, we can perform preliminary con-
formal mappings at will. Because of this freedom in the choice of the
original region it turms out that it is never necessary to deal with the
difficulties which may arise from a complicated structure of the boundary.

In the following € denotes a plane region of connectivity n > 1. The
components of the complement are denoted by E,, ks, . . ., E,, and
we take I, to be the unbounded component. Without loss of generality
we can and will assume that no E, reduces to a point, for it is clear that
8 point component is a removable singularity of any mapping function,
and consequently the mappings remain the same if this isolated boundary
point is added to the region,

The complement of £, is a simply connected region €. By Riemann’s
theorem, € can be mapped conformally onto the disk 2| < 1; under
this mapping £ is transformed into a new region, and the images of
£y, ..., E. are the bounded components of its complement. For
the sake of convenience we agree to use the same notations as before the
mapping; in particular, E, is now the set |z} = 1. The unit circle |¢| = 1,
traced in the positive direction, will be denoted by €, and is called the
outer contowr of the new region Q.

Consider now the complement of Ey with respect to the extended
plane. This is again a simply connected region, and we map it onto the
outside of the unit circle with o corresponding to itself. The image of (',
is & directed closed analytic curve which we continue to denote by C,, just
as we keep all the other notations. In addition we define the inner con-
tour ('; to be the unit circle in the new plane, traced in the negative
direction.

The process can evidently be repeated until we end up with a region
£2bounded by an outer contour ', and n — 1 inner contours C, . . . ,Cra
(Fig. 31). Itisimportant to note that the index of a contour with respect
to an arbitrary point in the plane can be readily computed. For instance,
at the stage where (i, k < n, is the unit circle, the index of (' 1s —1 with
respect to interior points of E, and 0 with respect to all other points not
on ;. The subsequent mappings will not change this state of affairs.
The fact is clear, and a formal proof based on the argument principle
can easily be given. One shows in the same way that the outer contour
('» has the index 0 with respect to interior points of E, and the index 1
with respect to all other points not on (.. It follows that the cycle
C=Ci+C:4+ - - - + €, bounds € in the sense of Chap. 4, Sec. 5.1,
Definition 4. The distinction between outer and inner contours is coin-
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FIG. 31. Transformations of a multiply connected region.

cidental, for evidently an inversion with respect to an interior point of
£, will make €, the outer contour.

It is clear that Theorem 9 applies to . As a matter of fact the
existence of a barrier is completely obvious since any contour can be
transformed into a circle.

Supposc now that we solve the Dirichlet problem in @ with the bound-
ary values I on C; and O on the other contours. The solution is denoted
by wi(z), and it is called the harmonic measure of C with respect to the
region 2. We have clearly 0 < w(2) < 1in @ and

* wifz) + wa(e) + - - Fea(e) =1

If we map @ so that C; becomes a circle, then wy can be continued across
C; according to the reflection principle. We conclude that oy is har-
monic in the closed region @ in the sense that it can be extended to a larger
Tegion,
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The contours (5, . .
©, homology being understood with respect to an unspecified larger region.
The conjugate harmonic differential of w has periods

3wk
Qrj = ——ds = *duy
ki C; On Ci de

slong C;. We assert that no linear combination hje;(z) + how(2) + - 4
+ Mp1esp-1{2) with constant coefficients can have a single-valued conju-
gate function unless all the A; are zero. ‘To see this, suppose that thig
expression were the real part of an analytie function f(z). By the reflec-
tion principle, f(z) would have an analytic extension to the closure of Q.
The real part of f(z) would be constantly equal to A, on €, 7 = L...,
n — 1, and zero on C,.. Consequently, each contour would be mapped
onto a vertical line segment. If w, does not lie on any of these segments,
a single-valued branch of arg (f{(z) — w)) can be defined on each contour.
It follows by the argument principle that f(z) cannot take the value we in
2. But then f(z) must reduce to a constant, for otherwise the image of @
would certainly contain points not on the line segments. We conclude
that the real part of f(z) is identically zero, and hence the boundary values
A must all vanish,

What we have proved is that the homogeneous system of linear
equations

(13) 7\1a1j + )\2&23' + - + )m-w-lan-.lrj =0 (j = 1, PPN (B 1)

has only the trivial solution A; = 0, for these are the conditions under
which A 4 © ¢ 4 Muoawe-r hag a single-valued eonjugate. By the
theory of linear equations any inhomogeneous system of equations with
the same coefficients as (13) must have a solution. In particular, we
conclude that it is possible to solve the system

Mo+ hean 4 - - -+ Apillngy = 27
Aronz - Agerpe + - ¢ -+ A 1Ctn1,s = 0

(14) e
M1+ ez + ¢ 0 0 F Aatnetnr = 0
?\laln + )\2a2n + e + ?\n-—lan—l.ﬂ = _2"7

where the last equation is a consequence of the n — 1 first (because
et + ez + - -+ ows = 0).  In other words, we can find a multiple-
valued integral f(z) with periods + 274 along €, and C,, and all other periods
equal to zero, the real part being constantly equal to A, on €y (we set
An = 0). The function F(z) = &/ is then single-valued. We prove:

.y Cay form a homology basis for the cycles in
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FiG. 32.  Concentric slit region.

Theorem 10. The function F(z) effects a one-to-one conformal mapping
of 2 onto the annadus 1 < |w| < eh minus n — 2 concentric arcs situated on
the circles |w| = eM, s =2, ., .. ,n—1,

The mapping is illustrated in Fig. 82. The contours 'y and (', are in
one-to-one correspondence with the full circles, while the other contours
are flattened into circular slits. It should be imagined that each slit has
two edges which together with the end points form a closed contour.

The proof is by use of the argument principle. We know that F{z) is
analytic with a constant modulus on each contour. The number of roots
of the equation F(z} = wy is given by

1 F'{z) dz )] f F'(z) dz

19) 53 Jo 7@ — e T 3 S T = o

+ - -

n 1 F'{z) dz
2a1 Jo. Flz) — we

at any rate if w; is not taken on the boundary. For we = 0 the terms in
(15) are known, being equal to 1, 0, . . ., 0, —1, respectively. The
integral over (; remains constantly equal to 1 for |wd < ¢, and it
vanishes for [we] > eM; similarly, the Iast integral is —1 for jwg| < 1 and 0
for |ws| > 1. The integrals over €, 1 < k < n, vanish for all w, with
lwe| # €.  Suppose now that the value w is actually taken by F(z) ; inas-
much as € must be mapped onto an open set, we can choose fw,| > all e,
For this wp the expression (15) must be positive. But that is possible
only if 1 < [we < . Thus »; > 0 and, by continuity, 0 < M £ A1
From here on the proof could be completed by means of a purcly
topological argument. It is more instructive, however, and in faci
simmpler, to draw the conclusion from the argument principle, When
there are simple poles on the boundary, the residue theorem continues to
hold provided that the contour integral is replaced by its Cauchy princi-
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pal value, and provided that the sum of the residues includes sne-haif of
the residues on the boundary.t In the present situation the second con-
vention means that a value taken on the boundary is counted with half
its multiplicity. The computation of the principal values causes no
difficutty. If |wg| = €™, we find that

r F'iedde 1 F'(2)dz
PV o F o) — w8 Jo Ty

for by elementary geometry {or direct computation)
d arg (F(z) — wy) = 2 d arg F{2).

Consequently, the principal values in (15) are L for k = 1, 0 for 2 <
k=n-—1 —Llfork = n.

We conclude now that each valie on the circle by} = 1or jwg] = eMis
. taken one-half time, that is to say once on the boundary; this proves that
Cy and €, are mapped in a one-to-one manner and that 0 < A < Ay,
22 1, n. Next, 1 < |wg < &M, it follows that w, is taken either once
in the interior, twice on the boundary, or once on the boundary with the
multiplicity 2. On each contour €5, . . . , C,_; a single-valued branch
of arg F(z) can be defined, and the values of multiplicity 2 correspond to
relative maxima and minima of arg F(z). There is at least one maxi-
mum and one miniml‘;'m, and there cannot be more or else F(z) would
pass more than twice through the same values. Furthermore, the differ-
ence between the maximum and the minimum must be <2, which
shows that each contour is mapped onto a proper arc. Finally, the ares
which correspond to different contours must be disjoint.

We have proved the complete Theorem 10, and in addition we have
been able to deseribe the correspondence of the boundaries. The sig-
nificance of the theorem is that we can map © onto a canonical region
bounded by two circles and n — 2 concentric cireular slits; by way of
normalization the radius of the inner circle is chosen equal to 1. For a
given choice of € and (', the canonical mapping is uniquely determined
up to a rotation. This follows from the fact that the system (15) has
only one solution.

The shape of & canonical region of connectivity # depends on 3n — 6
real constants. In fact, the position and size of each slit is determined

iIn Chap. 4, Sec. 5.3, the Cauchy principal value wag introduced in the case of
an integral over a straight line. 1In the case of an arbitrary analytic arc it is simplest
to define the principal value by means of an auxiliary conformal mapping which
transforms a subare into a line segment. The stated generalization of the residue

theorem follows quite easily and proves that the principal value is independent of the
auxiliary conformat mapping.
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by three numbers, a total of 3n — 6; the thickness of the annulus gives
one additional parameter, but another parameter must be discounted to
allow for the arbitrary rotation.

EXERCISES

1. Prove directly that two circular annuli are conformally equivalent
if and only if the ratios of their radii are equal.
2. Prove that oy = e Hint: Apply Theorerm: 21, Chap. 4.

5.2. Green’s Funclion. We suppose again that Q is a region of finite
connectivity, and inasmuch as preliminary conformal mappings will be
permissible we can assume that @ is bounded by analytic contours
Ch, . . ., Cy; this time the case n = 1 will be inchuded.

We consider a point z; € @ and solve the Dirichlet problem in & with
the boundary values log |t — 2z]. The solution is denoted by G(z), but
the main interest is attached to the function ¢(z) = G(z) — log |z — =,
known as the Green’s function of & with pole at z,. When the dependence
on 2o is emphasized, it is denoted by g(z,20).

The Green’s function is harmenic in Q exeept at 2o, and it vanishes
on the boundary. In a neighborhood of z it differs from — log |z — 2
by a harmonic function. By these properties g(z) is uniquely determined.
In fact, if g;{2) has the same properties, then ¢ — g is harmonic through-
out @ and vanishes on the boundary. By the maximum principle it
follows that g, is identically equal to ¢.

H two regions are conformally equivalent, then the Green's functions
with corresponding poles are equal at points which correspond to each
other. To be thore explicit, let z = #(¢) define a one-to-one conformal
mapping of a region Q' in the {-plane onto a region £ in the z-plane.
Choose a point ;€ Q and denote by g{z,20) the Green’s function of ©
with pole at zp = 2({o). [t is claimed that g(2(1),2:) is the Green’s func-
tion of &. To begin with, if { tends to a boundary point, then z(¢)
approaches the boundary of {, and hence g{2({),2e) has the boundary
values zero. As to the behavior at {y we know that g(z(¢),z) differs from
—log |2(¥) — 2(¢v)] by a harmonic function of z(¢), and hence by a har-
moni¢ function of ¢. Bui the difference log |2(1) — 2(f)| — log [¢ — ¢
is also harmonic, and it follows that g(z(¢),z;) has the desired behavior
at £ We have proved that the Green’s function is fnvariant under con-
formal mappings, and it is in view of this invariance that preliminary
conformal mappings can be performed at will.

In the case of a simply connected region there is a simple connection
between Green’s function and the Riemann mapping function. For the
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unit disk |w| < 1 the Green’s function with respect to the origin is evi- §
dently —log jwl. Therefore, if w = f(2) maps @ onto the unit disk with i

zy going into the origin, we find by the invariance that

g(zz0) = —log |f(2)).

Conversely, if g(z,2) is known, the mapping function can be determined. }

The Green's function has an important gymmetry property. Given §
two points 21, 2: €, we write for short gf,z;) = ¢, g(z,22) = ¢». By §
Theorem 21, Chap. 4, the differential g; *dg» — g2 *dg is locally exact
in the tegion obtained by omitting the points z; and z; from . If ¢; and |
¢z are small circles about z, and z;, described in the positive sense, the 3

cycle ' — ¢, — ezishomologous to zero (asbefore, ¢ = C1+ - - - + C).
Since g and g2 vanish on €, we conclude that

.Ll‘l‘c! gt *dgz 0 *dgl = 0.

Introducing Gy = g1 + log |z — 21| we have *dg, = *dG: — darg (z — z1)

and find

j{;gg *dgg - g2 *dg; = jcl G1 *dgz — g2 $d61 — Ll Iog |z - z;l *dgg
+ L god arg (z — 21}

On the right-hand side the first integral vanishes because ¢, and g; are
harmonic inside ¢;, and the second integral vanishes because |z — 2| i
constant on ¢; and *dg; 15 an exact differential in a neighborhood of z,.
The last integral equals 2rga(z,) by the mean-value property of harmonic
functions. In s symmetric way the integral over ¢; must equal —2wg1{z0),
and it is proved that gi(z;} — gi(z2) = 0 or

glznze) = glzn,21).

Becauzge of this symmetry property the Green’s function g(z,zy} is har-
monic also in the seeond variable.

The conjugate function of g(z,20), denoted by h(zz0), is of course
multiple-valued. It has above all the period 27 along a small circle ¢
ahout zp.  In additien, it has the periods

Py} = [, dh (sz0) = jc *g (zz0) (k=1 ... n).

Lemma 3, The period Py(z0} equals the harmonic measure wi{zo)} mullzplied
by 2x.
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The proof is another application of Theorem 21, Chap. 4. We
express the fact that the integral of o *dg — g *dwy over € — ¢ must
vanish. The integral over € reduces to Pi(zp), and by the same computa-
tion as above the integral over ¢ equals 2ray(cs). Hence Pr(z) = 2wen(zo).

5.3, Parallel Slit Regions. A little more explicitly than before, let us
write

(16) g{zz0) = Giz,z) — log |z — 2

withzo = oy 4 fyo e 2. We know that G(z,2) issymmetric, and harmonic
in each variable; as & function of z it has the boundary values log | — 2.

Consider the difference quotient Q{z,h) = (G{z,20 + k) ~ G{z,z0))/h
where we choose h real and so small that 2z, + b is still in . This is
a harmonic function of z with boundary values (log It — 20 — A| —
log [ — zd|)/h- As kh— 0 these boundary values tend unmiformly to
8/0xo log |& — 2] = Re 1/(f — 20). It follows by the maximum-mini-
mum principle that @{z,k) tends to its limit (6/0x0)G(2,20) uniformly,
not only on compsact sets, but on all of &. If we include the boundary
values, we have thus uniform convergence on the elosure &, which is a
compact set. The conclusion is that {(8/dz.)(G(z,2¢) is harmonic in &, as a
function of z, and that it has the boundary values Re 1/(f — 2z). If we
compare with (16) it follows that u:(z) = (8/8x0)g{z,20) is harmonic for
z ¥ 2, continiously zero on the boundary, and differs from Re 1/{(z — z)
by a harmonic funetion,

The conjugate differential of w:(2) has certain periods 4, along the
contours Oy But it is easy to construct a linear combination of u:(z)
and the harmonic Ineasures w,(z) whose conjugate differential is free from

periods. Indeed, w1 4+ Mwi + - - ¢ 4 M—iws—: has this property pro-
vided that
)\10.'1;; + }\2&2}; + st )\n_lczn_l,k = —Ak (k = 1, PP (B 1).

We know already that this inhomogeneous system of equations always
has a solution. We have thus established the existence of a function
p(z) which is single-valued and anslytic in @, except for a simple pole
with the residue 1 at 2;, and whose real part is constant on each contour.
By these requirements p(z} is uniquely defermined up to an additive
constant.

By differentiation with respect to yo we conclude guite similarly that
vo(2) = —(8/8y0)g(z,20) venishes on the boundary and has the same
singularity as Im 1/{z — z). If a suitable linear combination of har-
monic measures is added, the conjugate function becomes single-valued.
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(2) {5 FIG. 33. Parallel slit regions.

Hence there exists a single-valued analytic function ¢(z) with the singular
part 1/(z — 2¢) whose imaginary part is constant on each contour.
The functions p(z) and ¢(2) lead to simple canonical mappings.

Theorem 11. The mappings determined by p(z) and q(z) are one to one,
and the image of S is a slit region whose complement consists of n vertical or
horizontal segments, respectively (Fig. 33a, b).

The proof is quite similar to that of Theorem 10. This time the
expression

(17) S R AOLS

k=1

represents the number of zeros of p(z) — we minus the number of poles.
But it is easy to see that (17) vanishes for all w,, including boundary
values. In the latter case the prinecipal value must be formed, but if
wo i taken on €y the imaginary part of p’ de/(p — we) vanishes along
Ck and there is no difficulty whatsoever. Since there is exactly one pole
we conelude that p(2) takes every value once in the interior of @, twice
on the boundary, or once on the boundary with the multiplicity 2. The
rest of the proof is an exact duplieation of the earlier reasoning. The
proof remains valid for ¢(z) without change.

Parallel slit regions may be thought of as canonical regions, but they
are not all conformally inequivalent, even if it is required that the point
at o« should correspond to itsclf. For instance, the mappings by pl2)
and ig(z} lead to vertical slit regions which are different, but confor-
mally equivalent. It is only for mappings with the same residue at
29 that the slit mappings are uniquely determined, except for a parallel
transiation.

EXERCISES

1. Prove that y(z,20) is simultanecusly continuous in both variables,
for z # zo. Hint: Apply the maximum-minimum prineiple to G{z,20).

i

«
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2. Show that the function e (g cos a + 4p sin'_a) maps ¢ onto a
region bounded by inclined slits.

*3, Using Ex. 2, show that p + ¢ maps © in a one-to-one manner onto
g region bounded by convex contours. Comments: _

(i) A closed curve is said to be convex if it intersects every straight
line at most twice.

(i) To prove that the image of C, under p + ¢ is convex we need
only show that for every a the function Re (p + ¢)¢' takes no value more
than twice on C.  But Re (p 4+ ¢)e* differs from Ie (g cos o + ip sm.a)
only by a constant, and the desired conclusion follows by the properties
of the mapping function in Ex. 2.

(ii) Finally, the argument principle can be used to show that the
images of the contours C; have winding number 0 with respect to a'll
values of p + g. 'This implies, in particular, that the convex curves lie
outside of each other.

A




7 ELLIPTIC FUNCTIONS

1. SIMPLY PE‘HEODIC FUNCTIONS
A function f(z) is said to be periodic with period o = 0 if
fe+ o) = f(z)

for all z. For instance, e* has the period 2#4, and sin z and cos z
have the period 27. To be more precise, we are interested only
in analytic or meromorphic functions f{z), and they shall be
considered in a region 2 which is mapped onto itself by the trans-
lation z — z + w.

If w is & period, so are all integral multiples nw. There may
be Other periods as well, but for the present we focus our atten-
tion exclusively on the pericds nw. From this point of view we
shall call f(z} a simply periodic function with period . In par-
ticular, it is irrelevant whether w is itself a multiple of another
period.

1.1. Representation by Exponentials. The simplest function
with period w is the exponential e?*#/«. T{ is a fundamental fact
that any function with period o can be expressed in ferms of this
particular function,

Let © be a region with the property that ze@ implies
z4+weland 2 — weQ We define € in the {-plane to be the
image of € under the mapping ¢ = ¢2™/«; it is obviously a region.
For instance, if € is the whole plane, then Q' is the plane punc-
tured at 0.  If Qis a parallel strip, defined by ¢ < Im (2r2/w) < b,
then € is the annulus e™® < || < e

255
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Suppose that f(2) is meromorphic in © and has the period w. Then
there exists a unique funetion F in § such that

M 1@ = Flewi).

Indeed, to determine F({) we write { = e*m#/; 2 is unique up to an addi-
tive multiple of », and this multiple does not influence the value f(2).
It is evident that F is meromorphic. Conversely, if F is meromorphic in
&, then (1} defines a meromorphic function f with period w.

1.2. The Fourier Development. Assume that @' coniains an annulus
r1 < J¢| < 7o in which F has no poles. In this annulus ¥ has a Laurent
development

o

POy = Y oum,

A=—

and we obtain
-
f(z) — E cﬂngim?lu.
—

This is the complex Fourier development of f(2), valid in the parallel strip
that corresponds to the given annulus.
The coefficients (ef. Chap. 5, Sec. 1.3} are given by

1

o = 5 ./Ifl=r FOr1d, (i <r<r),

and by change of variable this becomes
— 1 a-tu 2winz]w
&= — L f(2)e2winzlv (s

Here a is an arbitrary point in the parallel strip, and the integration is
along any path from a to @ + « which remains within the strip. If f(2)
is analytic in the whole plane, the same Fourier development is valid
everywhere,

1.3. Functions of Finite Order. When © is the whole plane F({) has
isolated singularities at { = O and §{ = =, If both these singularities are
inessential, that is, either removable singularities or poles, then F is a
rationsl function. We say in this case that f has finite order, equal to the
order of F.

We recsll that a rational function assumes every complex value,
including e, the same number of times, provided that we observe the
usual multiplicity convention. We obtain a similar result for simply
periodic functions of finite order if we agree not to distinguish between 2
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and z -+ . For convenient terminology, let us saS? that z + nw is
equivalent to z. If f is of order m we find that every complex value
¢ # F(0) and F( =) is assumed at m inequivalent points, with due count
of multiplicities. We observe further that f(z} —» F(0} when Im (z/w) —
— o and f(2) — F(=) when Im (2/w) — «. If we are willing to
agree that these values are also “assumed” (with proper multiplicity),
we can maintain that all complex values are assumed exactly m times.

For another interpretation we may consider the period strip, defined
by 0 S Im (2/w) < 2r. Since this strip contains only one representa-
tive from each equivalence class we find that f(2) assumes each complex
value m times in the period strip, except that the values F(0) and F (o)
require a special convention.

2. DOUBLY PERIODIC FUNCTIONS

The terms elliptic*function and doubly periodic function are interchangea-
ble; we have already met examples of such functions in eonnection with
the conformal mapping of rectangles and certain triangles (Chap. 6,
Sec. 2). Elliptic functions have been the object of very extensive study,
partly because of their function theoretic properties and partly because
of their importance in algebra and number theory. Our introduction to
the topic covers only the most elementary aspects.

2.1. The Period Module. Let f(z) be meromorphic in the whole plane.
We shall examine the set 3 of all its periods. If w is a period, so are all
intepral multiples ne, and if w; and we belong to M, so does wi + w2; a8 4
consequence, all linear combinations nyw; + ngwp arein M. In algebra, a
set with these properties is called a module (more precisely: a module
over the integers), and we shall call  the perdod module of f.

Apart from the trivial case of a constant function, M has also a
topological property : all its points are isolated. In fact, since f{«) = f(0)
for all we M the existence of a finite accumulation point would imme-
diately imply that f is constant. A module with isolated points is said to
be discrete.

Our first step is to determine all discrete modules.

Theorem 1. A discrele module consists either of zero alone, of the integral
multiples no: of a single complex nwmber w 7 0, or of all linear combinations
Niw + news with inlegrol coefficients of two numbers w, wy with nonreal
ratio wafwy.

As soon as M contains a number » # 0 it also contains one, call it
@y, whose absolute value is a minimum. Indeed, if 7 is large enough the
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disk lz| = 7 contains a point from M, other than 0. Because the points
are isolated there are only a finite number of such points, and we choose
w1 to be one closest to the origin (the reader may show that there are always
2, 4, or 6 closest points). The multiples 1w, are also in 3 » and these may
be all.

Suppose now that there exists an w € M which is not an integral mul-
tiple of w;. Among all such there is one, ws, whose absolute value is
smallest. We claim that wy/w, is not real.  If it were, there would exist
an integer n such that n < wy/wy < n + 1. This would give 0 <
[ner — wi| < |wl, an obvious contradietion.

It ean now be concluded that all numbersin 3 are of the form nyw, 4
nawg.  First of all, because wy/w Is nonreal any complex number w can
be written in the form Ajw; + Aews with real A and M. To see this we
need only solve the equations

w = )\1&)1 ‘E" Ag(ﬂg

w = Moy + Ayivg,

Bince the determinant wids — wean is # 0 the system has a unique solu-
tion (Ag,A2}; but (R;,Rs) is also a solution, and we conclude that X, and Ao
are real. To continue the proof, there exist integers m,, ms such that
Ay —mil £, e — mo| €L If » belongs to M, so does

o =w— M — Maws.

We have lo'| <} Jwi| + 3 w5 £ |ws] where the first inequality is strict
because w. is not a real multiple of w;. By the way we was chosen it
follows that o must an integral multiple of wg, and hence w has the
asserted form.

2.2. Unimodular Transformations. We assume henceforth that it is
the third alternative in Theorem 1 that occurs. The pair (wy,ws} has the
property that any weM has a unique representation of the form
® = My + nawe.  Any pair with this property will be called a basis of M
(even if it is not determined by the construction in the proof of Theorem 1).

We investigate the relation between two bases (wr,00) and (wf,w}).
Because (w1,0:) is a basis there exist integers a, b, ¢, d such that

o wy = awe + by
@) w] = cws + dwy.

We prefer to write these equations in matrix form

()-C 9C)
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. by h h
The same relation is valid for the complex conjugates, and we have thus

w; I';Jé _ a b wa (.-02 .
(3) w; 6}{ T \e d W

Sinee (w},w}) is also a basis we have similarly

we (:}2 _ a' b’ w§ 1’:);
) o o) T\ @)\ &
with integral o', V', ¢, d". .
From (3) and (4) we obtain

- We e _ a b a b ws s .
(:'3) Wi C:J] - C’ d’ C d wy c_ol
[ere the determinant wyid; — w@1éz1s 520, for otherwise any two numbers in

the module would have a real ratio, contrary to assumpti(.m. A matriz
with determinant =0 has an inverse matrix, and if we multiply (5) by the

. We f;!g .
inverse of ( _ ) we obtain

W Wi
a t\fa by _ (1 0y
¢ d'f\ec d}) \0 1
The matrices (a 3) and (f:, 3,) are inverse to each other. In par-
il A
ticular, their determinants must satisfy

a b |a b _1
¢ ') |e d ’
and since both are integers we must have
’ r
a b|_ o b’ - 4L
e d ¢ d

Linear transformations of the form (2) with integral coefficients and
determinant 41 are said to be wnemodulor. We have proved:

Any two bases of the same module are connected by a unimodular
transformation.

Geometrically, it is natural to consider the parallelogram spanr%ed by
& basig (wy,we) In its relation to the lattice formed by all numbers in the
module. Figure 34 shows two bases of the same module. Observe that
the parallelograms have equal area. -

We note here that the unimodular matrices, or the corresponding
linear transformations, form a group, the modular group.
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FIG. 34. Period module.

2.5. The Canonical Basis. Among all possible bases of 31 it is possible
to single out one, almost uniquely, to be called the canonical basis. It
will not always be necessary , or even desirable, to use such a special
basis, but it is impertant to know that one exists. Exeept for minor
adjustments it will be the basis introduced in the course of the proof of
Theorem 1.

Theorem 2. There exists a basis (wi,we) such that the rafio v = wi/en
satisfles the following conditions: (1) Im ¢+ >0, (i) —i < Be r £ 4,
@) || =1, (v) Rer 2 0 |7l = 1. The ratio r is uniquely determined
by these conditions, and there is o choice of two, four, or six corresponding
bases.

Proof. TIf we select «; and w, as in the proof of Theorem 1, then o] =
|wal, |we] = |1 + wo], and Jwe| < |y — we]. In terms of + these condi-
tions are equivalent to || 2 1 and |Re ] £ 1. If Im 7 < 0 we replace
{w1,000) By (—w1,ws); this makes Im r > 0 without changing the condition
on Re 7. If Re r = —1 we replace the basis by (wi,e1 + wi), and if
lrj = 1, Rer < 0 we replace it by (—ws,w,}. After these minor changes
all the conditions are satisfied.

We have seen that the most general change of busis is by a unimodular
transformation. If the new ratio is " we obtain

r_ortb
©) T T a+d
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iy . . §
with ad — be = + 1. Bimple computation gives
+ Im 7
(7) III"J ‘T’ = W

where the sign is the same as that of ad — be,

Buppose that both r and ¢ satisfy conditions (i) to {iv). We shall
show that they must then be equal. Our first remark is that by condi-
tion (i) it is the upper sign that is valid in (7), and hence ad — be = 1,
Second, because 7 and 7' play symmetric roles we are free to assume
that Im " < Im 7. It then follows from (7) that {er + df £ 1. Because
¢ and d are integers there are very few possibilities for this inequality to
hold.

One such possibility is to have ¢ =0, d = +1. The relation
ad — be = 1 reduces to ad = 1, and because a and d are integers we have
cither a =d = Lor a =d = —1. Equation (6) becomes + = 7 + b,
and by use of condition (i) it follows that |b| = |Re 7 — Re 7| < 1.
Therefore, and because b is an integer, b = G and ¢’ = 1,

A second possibility is to have d = 0. Then be = —1 so that either
& =1¢— —lerd = —1,¢=1. Theinequality jcr + d| < I becomes
l7| = 1, and according to condition (iii} we have thus || = 1. Equation
(6) reads v = +a — 1/r, which we may write as " = +a — 7 It
follows by (ii) that Ja] = [Re+' + Rer| < 1, except when r =+ = 73,
Save for this exception we have thusa = 0,7 = —7.  But by condition
{(iv) this can hold only if 7 = 4" = 4,

There remains only the possibility that ¢ and d are both 0, in
which case |ed] = 1. We conclude by use of (i) and (iii) that

fer + d|* = e?r|2 4+ ¢ + 2ed Re + = ¢* + d? — led]
= (le| = |d]}* + led] = 1.

Because of the opposite inequality ler + d] < 1 the equality sign must
hold in all places. This is possible only if || = 1 and Re = = &, that is
for 7 = ™%, However, under the restrictions (i) to (iv) this value corre-
sponds to a strict minimum of Im 7. Therefore the assumption Im + <
Im 7 gives again 7" = r,

We have proved that 7 is unique, and Fig. 35 shows the part of the
Plane to which a canonical » must belong. The canonical basis ( wi,ws)
can always be replaced by (—wi, —w:). There are other bases with the
same 7 if and only if 7 is a fixpoint of a unimodular transformation (6).
This happens only forr = iand 7 = e*/#; the former is a fixpoint of —1/r,
the latter of —(r + 1)/7 and of ~1/(r+ 1). These are the multiple
shoices referred to in the theorem.
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FIG. 35. 7-plane.

2.4. General Properties of Elliptic Functions. In the following f(z)
will denote a meromorphic function which admits all numbers in the
module M with basis (w,e.) 8s periods.  We shall not assume that the
basis is canonical, and it will not be required that M comprise all the
periods.

It is convenient to say that z; is congruent to 2, z1 = 2z (mod M),
if the difference 2y — 2z; belongs to M, ie., 21 = 25 + nuws + naws.  The
function f takes the same values at congruent points, and may thus be
regarded as a function on the congruence clesses. A concrete way to
make use of this property is to restrict the function to a parallelogram P,
with vertices 0, @ + w1, @ + ws, @ + @) 4 we. By including part of the
boundary we may represent each congruence class by exactly one point
in P;, and then f is completely determined by its values on P,. The
choice of a is irrelevant, and we leave it free in order to attain, for instance,
that f has no poles on the boundary of P,.

Theorem 3. An elliptic function without poles is a constand.

If f(2) has no poles, it is bounded on the closure of P,, and hence in
the whole plane. By Liouville’s theorern (Chap. 4, Sec. 2.3) it must
reduce to a constant,

Because the poles have no accumulation point there are only finitely
many poles in P.. When we speak of the poles of an elliptic function we
mean a full set of mutually incongruent poles. Multiplicitics are counted
in the usual manner.
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Theorem 4. The sum of the residues of an elliptic funclion is';éro.

We may choose @ so that none of the poles fall on the boundary of
P.. If the boundary 8P, is traced in the positive sense, the sum of the
residues at the poles in P, equals

21”_._ [, 1) 2.

Because f has periods w1, we the integral vanishes, for the integrals over
opposite sides of the parallelogram cancel against each other.

As a consequence of the theorem there does not exist an elliptic
function with s single simple pole,

Theorem 5. A nonconstant elliptic function has equally many poles as it
has zeros. ~

The poles and zeros of f are simple poles of f//f, which is itself an
elliptic function. The multiplicities are the residues of f//f, counted
positive for zeros and negative for poles. The theorem now follows from
Theorem 4.

If ¢ is any constant, f(z) — ¢ has the same poles ns f(z). Therefore,
all values are assumed equally many times. The number of incongruent
roots of the equations f(2) = ¢ is called the order of the elliptic function.

Theorem 6, The zeros ay, . . . , a, and poles by, . . . , ba of an elliptic

Junetion satisfy a1+  + + + @ = by 4 - -+ 4 b, (mod M).

This is proved by considering the integral
Voo d'(®)

o Jora &) ©

®
where we may again assume that there are no zeros or poles on the
boundary. By the calculus of residues the integral equals a¢; + - + -
+ @, — by — + + + — b, provided that we ehoose the representative zeros
and poles inside P,. Consider the sides from ¢ to g 4 wyand from a 4 oy
to @ 4- w; + wp. The corresponding part of the integral may be written

1 ¢ fotos  paturtusy 2 (2) ot f(2)
([~ L) e = e L

a-t-we f(Z) 2mt
Except for the factor —w, the right-hand member represents the winding
number around the origin of the closed curve described by f(2) when 2
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variesfromatoe 4+ o Ttis consequently aninteger. The same-applios E;.
to the other pair of opposite sides. Therefore the value of {8) is of the §
form ngw; + naws, and the theorem is proved. :

3. THE WEIERSTRASS THEORY

The simplest elliptic functions are of order 2, and such functions have
either a double pole with residue zero, or two simple poles with opposite 4
residues. We shall follow the classical example of Weierstrass, who chose
a function with a double pole as the starting point of a systematic theory. $

3.1. The Weierstrass {-function. We may as well place the pole at
the origin, and since multiplication with a constant factor is clearly |
irrelevant, we may require that the singular part isz-2.  If fiselliptic and §
has only this singularity at the origin and its congruent points, it is easy
to =ee that f must be an even function. Indeed, f(z}) — f(—2) has the .k
same periods and no singularity. Therefore it must reduce to a constant, 3
and on setting z = /2 we conclude that the constant is zero.

A constant can be added at will, and we can therefore choose the
constant term in the Laurent development about the origin {0 be zero. ]
With this additional normalization f(2) is uniquely determined, and it is 4
traditionally denoted by a special typographical symbol @(z). The 4
Laurent development has the form 1

P@) =%+ e tagt+ - - -

Bo far all this is hypothetical, for we have not vet shown the existence
of an elliptic function with this development. We shall follow the ususl
procedure in such cases, namely to postulate the existence and derive an
explicit: expression. The clue is to develop in partial fractions by the }
method in Chap. 5, Sec. 2, Our sim is to prove the formula 1

) CEFED) (tz—_'l"w)z - ;;,1“)

where the sum ranges over all o = ny0; + fews except 0. Observe that 3
(z — @) is the singular part at «, and that we have subtracted w2 in }
order fo produce convergence.

Our first task is to verify that the series converges. If || > 2/a,
say, an immediate estimate gives

P __1
(z.__w)z w?

220 — 2)
wiz — w)?

< 10§

= Jo®
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Therefore the series (9) converges, uniformly on every compaet set, prog,

vided that
Z -—1— < o,
joof?
wytl)

This is indeed the case. Because wy/w, s nonreal, there exists a & > 0
such that i + news| = k(|nd + |nel) for all real pairs (nyn.). If we
consider only integers there are 4n pairs (nyns) with [nd 4+ |ne| = n.
This gives
E |3 = 4?0"“32 nt < o,

T

wy<l

The next step is to prove that the right-hand side of (9) has periods

wy and wy. Direct verification is relatively cumbersome. Instead we
write, temporarily,
1 1 1
(10) O =5t ) ((;:w—)z - ;)
ol

and obtain by termwise differentiation

F@=~3- ‘;0 = ‘22 o

The last sum is obviously doubly periodie. Therefore f(z + w1} — f(2)
and f(z 4+ ws) — f(2) are constants. Because f(z) is even (as seen from
{10}), it suffices to choose z = —w1/2 and 2 = —w/2 to conclude that the
constants are zero. We have thus proved that f has the asserted periods.

It follows now that @{z) — f(2) is a constant, and by the form of the
development at the origin the constant is zero. We have thereby
proved the existence of §{(z}, and also that it can be represented by the
series (9). For convenient reference we display the important formula

(11 0@ = —2Y oy

3.2. The Functions {(z) and ¢(z). Because ${z) has zero residues, i
is the derivative of a single-valued function. It is traditional to denote
the antiderivative of §(2) by —&(#), and to normalize it so that it is odd.
By use of (9) we are led to the explicit expression

1 1
(12) r(z)ﬂ%+2(z_w+;+§)-
wa)
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The convergence is obvious, for apart from the term 1/z we obtain the new
series by integration from 0 to 2 along any path that does not pass through
the poles.
It 18 clear that {(2) satisfies conditions ¢(z + wi)) = ¢(z) + 1,
{(z + ws) = £(2) + ue, where n; and ny are constants, They are eon-
nected with wi, wp by a very simple relation. To derive it we choose any
a # 0 and observe that
2—:"5. fap,. {2y de = 1,
by the residue theorem. The integral is easy to evaluate by adding the
contributions from opposite sides of the parallelogram, and we obtain
the equation
Mz — YHawy = 211’3,
known as Legendre’s relation.
The integration can be carried one step further provided that we use
an exponential to eliminate the multiple-valuedness. Just as easily we
can verify directly that the product

(13} olz) = 2 n (1 — S) el thsla)®

wytQ
converges and represents an entire function which satisfies

a'(2)/a(z} = ¢(2).
The formula (13) is a canonical product representation of o(2).
How does o(z) change when zisreplaced by 2 + wiorz + «? From

0”(2 + w1) _ G"(Z)

ez + w)  ol2)
it follows at once that

+m

(2 + w1} = Cw()em

with constant 'z, To determine the constant we observe that o(2) is an

odd function. On setting 2 = —« /2 the value of ('; can be determined,
and we find that o(z) satisfies
(14) o(z + wi) = —e(@)entta/n

o{z + wi) = —e(g)enltald,

EXERCISES

1. Show that any even elliptic function with periods w;, w; can be
expressed in the form

N EGZE0 (0 - oty
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provided that 0 is neither a zero nor a pole. 'What is the cormsPondin@
form if the function either vanishes or becomes infinite at the origin?
2. Show that any elliptic function with periods wy, w- can be written as

C n :g — 23 (€' = const.).

Hint: Use (14) and Theorem 6.

3.3. The Differential Equation. By use of formula (12) it is easy to
derive the Laurent expansion of {(z) about the origin, and differentiation
will then yield the correSponding expangion of §£(z). We have first

22 2

-

& w (o) [

and when we sum over all periods we obtain

o

(@ =1 = ¥ Gt

k=2

1
w(
Observe that the corresponding sums of odd powers of the perieds are
zero, as was to be expected sinee { is an odd function. Because

P@ = =G

where we have written

we obtain further

P = ;é + ) (2 — DG
k=2

In the following computation we write down only the significant
terms, sinee it is understood that the omitted terms are of higher order:

P@) = ;15 4 3G+ 56 + - - -

@) = — fm + 6Ga2 + 200G + - - -

5?()2ﬂi—-(“—‘iﬁ—zs(}(afmL e
19 = &+ 5% 1 60e + - - -
60G(2) = 60@2 404 -
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The last three lines yield
- @) — 4P(R)* + 6060 (2) = — 140G, + - - -

Here the left-hand side is a doubly periodic function, and the right-hand
side has no poles. We may therefore conclude that

§'(2)2 = 49(2)? — 60 (z) — 1406,
It is customary to set g» = 600, gs = 1400 so that the equation becomes
(15) (=) = 49(2)* — gfP(2) — ga

This is a first-order differential equation for w = §(z). It can be
solved explicitly, namely, by the formula

2 = jm dw
VEr = g —

which shows that @(z} is the inverse of an elliptic integral. More
aceurately, this connection is expressed by the identity

+ constant,

"#(2)
£ — By =
¥(ze) — gzw —_ ga

where the path of integration is the image under @ of a path from z, to 2
that avoids the zeros and poles of §'(2), and where the sign of the square
oot must be chosen so that it actually equals §'(2).

We recall that we encountered the relationship between elliptic
functions and ethptic integrals already in connection with the conformal
mapping of rectangles and certain triangles (Chap. 6, Sec. 2).

*EXERCISES

The Weierstrass funetions satisfy numerous identities which are best
dealt with in an exercise seetion. They can be proved either by compar-
ing two elliptic functions with the same zeros and poles {(when o-functions
are involved), or by comparing elliptic functions with the same singular
parts (when only - and {~functions are involved). The following
sequence of formulas is so arranged that we need to resort to this method
only once.

1.

(16) P — Py = — Fe= e )

a(2)?e(u)?

(Use (14) to show that the right-hand member is a periodic funetion
of z. Find the multiplicative constant by comparing the Laurent
Jtevelopments.)
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2.
#(2) et _
(17 o0 — ) - ez —u) + i+ w) — 28(2).
(Follows from (16) by taking logarithmic derivatives.)
3.
1 @ Y
as) $e + ) = 56 + £ + 5 HO = E L.

(This is a symmetrized version of (17}.)
4. The addition theorem for the @-function:

() — @)
(19) P +w) = —PE — @) + 4 (@(z) soag)

{Differentiation of (18} leads to a formula which contains £ (z). Ii
can be eliminated by (15} which gives @' = 6% — 1g,. Symmetriza-
tion yields (19). Observe thet this is an algebraic addition theorem, for
§'(z) and §’(u) can be expressed slgebraically through §(2) and $(w).)

5. Prove

o = 3 (58 - 20,
6 Prove 9'(2) = —o(22)/c(2)%
7. Prove that

@) ' (2) 1 ’
2 (u) &' ()
Ptz —Pu+z2 1]

= 0.

3.4. The Modular Function Mr). The differential equation (15} cax
also be written as

(20) P22 = 4(@(2) — e} (P — )@ (2) — es),

where e, €3, €3 are the roots of the polynomial 4w® — g2 — gs.

To find the values of the ¢ we determine the zeros of §'(z). The
symmetry and periodicity of $2(z)} imply (e — 2) = §(z). Hence
P (w01 — 2) = —@'(2), from which it follows that §’(w:/2) = 0. Simi-
larly " (w:/2} = 0, and also §'{(ws + ws}/2) = 0. The numbers wy/2,
ws/2 and (w; -+ we}/2 are mutually incongruent modulo the periods.
Therefore they are precisely the three zeros of §, which is of order 3, and
all the zeros are simple. When we compare with (20) it follows that we
can set

(21) €y = f?(wx/ﬁ);, € = @(szg), = @((‘-"1 + w?.)/?'}‘
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It follows, moreover, and this is very important, that these rools are
all distinct. Indeed, §(z) assumes each value e, with multiplicity 2, and
if two of them were equal that value would be assumed four times n
contradiction with the fact that @ is of order 2.

If we substitute z = w1/2, wy/2 and (w1 + ©2)/2 in the definition (9)
of @(z) it is seen at once that the e, are homogeneous of order —2 in
@1, ey (in other words, if the periods are multiplied by t, then the e, are
multiplied by £%). We conelude that the quantity

€3 — €Eg

(22) A = PP
depends only on the ratio r = wy/w, a8 indieated by our notation. It is
quite clear from (Y) that A(r) is the guotient of two analytic functions in
the upper half plane Im 7 > 0. Because e; # ez it is actually analytic,
rather than meromorphic; because e, # e; it is never equal to 0, and
because e; # € it is never equal to 1.

We shall study the dependence on 7 in greater detail. If the periods
are subjected to the unimodular transformation

0 @y = aws + ben
(23) w] = ewe + dn

|

then, first of all, the @-function does not change. Therefore, by looking
at (20), the roots e; can at most be permuted. Let us see what actually
happens. It is clear from (23) that «j/2 = e1/2 and wh/2 = w,/2 if
a=d=1(mod 2) and b = c = 0 (mod 2). Under this condition the e
do not change, and we have shown that

24) A (f: i‘ db) —\6)  for (j 3) = ((1) ‘1)) (mod 2).

The transformations which satisfy the congruence relation in (24)
form a subgroup of the modular group (cf. Sec. 2.2}, known as the con-
gruence subgroup mod 2. Equation (24) asserts that A(r) is invariant
under this subgroup. Quite generally, when an analytic or meromorphie
funetion is invariant under a group of linear transformations, we call
it an automorphic function. More specifically, a function which ig auto-
morphic with respect to a subgroup of the modular group is called &
modular function (or an elliptic modular Sfunction).

We still have to determine the behavior of A(r) under a modular
transformation that does not belong fo the congruence subgroup. T4 is

. . . 11 01
cufficient to consider matrices congruent mod 2 to 0 1 and 10

respectively, for all other types can be composed from these, In the first
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case we ol?t-ain @if/2 = (w1 + «)/2 and ©]/2 = w;/2; this means that €2
and ¢; are interchanged, while ¢; remains fixed, and hence A goes over mmto
(e2 — €5)/(ex — €g) = A/(A — 1). In the second case w!/2 = /2, w/2 =
w2/2, 50 thate; and ez are interchanged, and A goes over into 1 — A, ’Sz;-mple
transformations are r — r + L andr — —1/7. We find that A(r)satisfies
the functional equations o

25) Mr + 1) = M_:;_Q‘L_LT x(— ;) =1 —A@)

3.5. The Conformal Mapping by Mr). For convenience we shall
hen'ceforth use the normalization o; = 1, ws = +. With this choice of
periods we obtain from (9) and (21)

%

€z — €2 = 2 [ 1 _ 1
mat LIV =3+ 3 (et - %)r)ﬂ]

(26)

]

ey = 1 1
ame E [(m“%-}-nf)”—(ﬂ%-i-(n—;)r)?]

g == oo

?;vhere the double series are absolutely convergent. Our first observation
is that these quantities are real when 7 is purely imaginary (this is also
true f’f the individual ¢;). Indeed, when we replace r by —r the sunl.;né
remain the same, except for a rearrangement of the terms. We concludf;
that A(r) is real on the imaginary axis.

AN
Because 0 1) is in the congruence subgroup mod 2 we have

Ar 4 2) = A(r). In other words, A has period 2. As we have seen in
Sec. 2, this means that A(+) can be expressed as a function of ev. Tt
would not be difficult to determine the Fourier development, but we -shall
be content to show that A(r) — 0 as Im 7-» . ’

To evaluate (26) we sum first with respect to m. This summation
can be carried out explicitly by use of the formula

2 o 1
sin?rz Z (z — m)?
-l

(Chap. 5, Sec. 2.1, (8)). We obtain at once

€3 — €9 72 i ( 5 1 S - 1
(27) Wt \eosTw( = Bl sin? a(n — L

amamr 3 (o - aeder)
D \eosfrnr sin*a(n - 3
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The series are strongly convergent, both forn — 4+« and n — — e, for
|cos narr| and | sin nrr] are comparable o e™7Im7; the convergence is uni-
form for Imr = & > Q.

The limits can now be taken termwise, and we find that e; — ex — Q,
€; — ex— 7 (from the term n = 0). Hence Mr) -0 as Im +— =,
uniformly with respect to the real part of 7. Tt follows further by the
second equation (25) that Mr) — 1 when 7 approaches 0 along the
imaginary axis,

We need one more piece of information, namely the order to which
Mr) vanishes together with 7. From (27) the leading tersgs in e; — ez
are the ones correspondington = 0andn = 1. The sum of these terms

is
4:811'51' 481-1'1
2
2 [(1 J eyt + (1= e'””'){'

and we conclude that
(28) Ma)e ™ — 16

for Im» — w,

In Fig. 36 the region @ is bounded by the imaginary axis, the line
Re r = 1, and the circle | — &| = 1. The transformation r 4 1 maps
the imaginary axison Rer = 1,and 1 — 1/rmapsRer = lonjr — 4| = L
Since AMr) is real on the imaginary axis, it follows by virtue of the relations
(25) that it 1z real on the whele boundary of . Furthermore, A(z) — 1 as
7 tends to 0 and A#) — « as 7 tends to 1 inside G,

We apply the argument principle to determine the number of times
A7) takes a nonreal value wy in . Cut off the corners of © by means of a

———————————————— £y

FIG. 38
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horizontal line segment Im.» = £, and its images under the transformations
—1/r and 1 — 1/7 (these images are circles tangent to the real axis).
For sufficiently large £, it is elear that A(r) # w¢ in the portions that have
been cut off. The circle near + = 1 is mapped by Az} on a eurve
A=ML =1/ =1~ 1/0r); where r = 8 4 12, 0 £ 8 < 1; 1n view of
(28) this is approximately a large semicircle in the upper half plane. 1t is
now evident that the image of the contour of the truncated region £ has
winding number 1 about we If Im we > 0, and winding number 0 if
Im s < 0. As a resuft A(x) takes every value in the upper half plane
exactly once in €, and no value in the lower half plane, This is alzo suffi-
cient to guarantee that A7) is monotone on the boundary of €. Indeed,
if it were not, the derivative M{7) would vanish at a boundary point, and
it would be impossible for a full semicircular neighborhood of that bound-
ary point to be mapped onto the upper half plane,

Theorem 7. The modular function Mz) effects a onc-to-one conformal
mapping of the region § onto the upper holf plane. The mapping extends
conlinuously lo the boundary in such a way thal + = 0, 1, « correspond lo
A=1, 0, (L

By reflection the reglon €' that is symmetric to § with respect to the
imaginary axis is mapped onto the lower half plane, and thus both regions
together correspond to the whole plane, except for the points 0 and 1.

We shall also prove:

Theorem 8. Every point v in the upper half plane 1s equivalent under the
congruence subgroup mod 2 to exactly one point in Q\J @',

We refer to ¥Fig. 37. The reader is asked to verify that the region A
is mapped on the shaded regions in the figure by means of the linear trans-
formationsr, ~1/5,+ — 1, 1/(1 ~ 7), &+ — 1)/, 7/(1 — #) which we shall
denote by 84, Sz, . . ., Ss. The matrices of the inverse transformations
St ®k=1,...,06) arein order

1 ¢ 0—1,111-—1]01,10_

o 1/\t o¢f'\o 1t/'\u0 of\~1 11 1
One recognizes readily that these matrices form a complete set of mutually
incongruent matrices in the sense that every unimodular matrix is con-
gruent mod 2 to exactly one of them. Precisely the same can be shown

for the transformations S, (k = 1, . . . , 6) which map A’ on the unshaded
regions in the figure (the task of writing them down is left to the reader).
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Together the 12 images of A and A’ cover the set D \J ¥ (closures should
be taken with respect to the open half plane).

Let # be any point in the upper half plane, The set A\J A’ can he
identified with the closure of the shaded region in Fig. 34. Therefore,
according to Theorem 2 there exists & modular transformation S such

that S7 liesin A\U A". Suppose first that Srisin &,  We know that the 7
matrix of 8 is congruent mod 2 to the malrix of an 8;1. Tt follows that
the matrix of T = 5.8 is congruent to the identity matrix; in other 4
words, T belongs to the congruence subgroup. Since Sz lies in & we know
fyrther that Tr = 8.(Sr) liesin @\ . The same reasoning applies if 4

Sred’, Thus there is always 8 T7 in § U T, and a trivial consideration
shows that it can be chosen in £ \U &',

The uniqueness follows readily from the fact that the S, as well ag
the 8}, are mutually incongruent. We shall leave it to the reader to work

out the details,

*EXERCISE

Show that the function

4 (1=

T6) = o7 g =y

is automorphic with respeet to the full modular group. Where does it 3

take the values 0 and 1, and with what multiplicities? Show that

4 €1z + €263 +- €38y .
27 (ey — eq)*(es — ea)*{e; — ey)*

Show also that J (v} maps the region A in Fig. 37 onto a half plane.

JG) =

FiG 37. Fundamental region of A(r).

8 GLOBAL ANALYTIC FUNCTIONS

1. ANALYTIC CONTINUATION

In the preceding chapters we have stressed that all functions must
be well defined and, therefore, single-valued. In the case of
functions like log z or 4/z which are not uniquely determined by
their analytic expression, a special effort was needed to show that,
under favorable eircumstances, a single-valued branch can be
selected. While this point of view answers the need for logical
clarity, it does not do justice to the fact that the ambiguity of
the logarithm or the square root is an essential characteristic
which cannot be ignored. There is thus a clear need for a
concept that emphasizes rather than ecircumvents muliiple-
valuedness.

L1. General Analytic Functions. An analytie function f(z)
defined in a region € will constitute a function element, denoted
by {f,€), and a global analytic function will appear as a collection
of function elements which are related to each other in a pre-
seribed manner,

Two function elements (fi,2) and (f3,8) are said to be
direct analytic continuations of each other if 2; M @, is nonempty
and fi(z) = fo(2) in & M L. More specifically, (%) is called
a direct analytic continuation of (f;,21) to the region ¢, There
need not exist any direct analytic continuation to s, but if
there is one it is uniquely determined. For suppose that (f3,Q2)

215
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and (g} are two direct analytic continuations of (f1,Q0); then fo = g¢
in 9, M, and this implies fo = go throughout 9. We note that if
@y C 9y, then the direct analytic continuation of (f,2) 18 (f1,5).

If (f3,€) and (f5,2:) are direct analytic continuations of each other,
it is evident that an analytic function f ean be defined in @, O by
setting f = f1in @ and f = f2in Q. Since it had been possible to zon-
sider the function element (f,Q, \J @) from the beginning, it would seem
that nothing has been gained. Consider, however, a third function ele-
ment (f;, ;) which we assume to be a direct analytic continuation of
(f2,%:). Then it may well happen that Q; overlaps ©,, bui that (f5,:) is
nevertheless not a direct analytie eontinuation of (f,%;). In this situ-
ation the collection (f1,2), (f2,0:), (f3,0:) cannot be replaced by a single
function element. We are thus led to a genuine broadening of the concept
of function.

More generally, we shall consider chains of function elements
(i, ), (J5,92), . . ., (fi,%) such that (fi,f%) is & direct analytic con-
tinuation of (fi1,%_1). The elements in such a chain are said to be
analytic continuations of each other. We adopt the following definition:

Dedinition 1, A global enalytic function is a nonvoid collection T of function
elements () which is suck that any two elements in £ are analytic confinua-
tions of each other by way of @ chain whose links are members of f.

A complete analytic function is a global analytic function which contains
all analytic continuations of any one of its clements,

A complete analytic function is evidently marimal in the sense that ii
cannot be further extended, and it is clear that every function element
belongs to a unigue complete analytic function. The incompicete global
analytic functions are more arbitrary, and there are many cases in which
two different collections of function elements should be regarded as
defining the same function. For instance, a single-valued funetion f(z),
defined in G, can be identified either with the collection which consists of
the single function element (£,8), or with the collection of all (f,Q") with
o

A global analytic function f has a uniquely determined derivative
defined by the function elements (7,0}, Indeed, if {f1,2;) and (f, ) are
direet analytic continuations of each other, o are (f},2y) and (f},0:).
The higher derivatives £/, £, . . . can be defined in the same way.

A similar relationship may exist between any two global analytic
funciions f and g We assume that there is given a correspondence
which to every (f,9) ef assigns a unique function element (g,f) ¢ g In
such a way that direct analytic continuations go over in direct analytic
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continuations. In these circumstances we agree to say that f is subordi-
nale to g, and it is possible to define f 4+ g and fg as collections consisting
of the elements (f + ¢,9), (fg,&) which correspond te the elements (f,02)
of . For instance, f is subordinate to any entire function h, from which
it follows that f -+ h and fh are well defined.

We can now formulate a classical principle known as the permanence
of functional relations. Suppose that certain global analytic functions
f, g, . .. are given and that, for instance, f is subordinate to all the
others. Let il be known that a set of corresponding function elements
(£, (g,), . . . satisfy a relation of the form G(f,g, . . .} = 0, where
the expression ¢ is a polynomial in several variables (the proof is valid
much more generalty). If (f,,f4), (g5,%1), . . . is a set of direct analytic
continuations, it follows at once that G(fygy, . . ) = 0 in €, for the
simple reason that the composite function G(f1(2),g:(2}, . . .) is analytic
in §; and vanishesin € M Q. We are thus able to conclude that the rela-
tion G(f,g, . . .} = 0holds for all sets of corresponding function elements,
a fact which may also be expressed through the equation Gi{f,g, . . .) = 0.

EXERCISES

1. Prove that a funciion element (f,C), where C is the whole plane,
determines a complete analytic function consisting of all function ele-
ments of the form (£,Q).

2. Define 4/z as a global analytic function by means of a finite num-
ber of function elements.

3. Suppose that (f,() satisfies s differential equation of the form
B .. ) =0, where I’ 18 a polynomial whose coeflicients are
entire functions. Prove that all function elements of the complete
analytic function determined by (f,2) satisfy the same differential
equation.

1.2. The Riemann Surface of ¢ Function. In order to study the
muliiple-valued nature of a global analytic function it is convenient to
introduce the notion of a branch.i Two function elements (f,0:) and
(f2,02) are said {o determine the same branch at a point 24 € 2, M &2 when-
ever f1 = fy In a neighborhood of z,. In order that this happen it is suf-
ficient, but not necessary, that the function elements are direct analytic
continuations of each other. They are always, however, analytic con-
tinuations of each other, for they are both direct analytic continuations
of their common restriction to a neighborhood of 2,. We note that two

1 We make only transtent use of this notion of subordinacy which is related to

but not identical with one in rather common use.
§ The word germ is also commonly used.
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function elements determine the same branch at 2, if and only if they
have the same Taylor devclopment about z,.

The relation between function elements which we have just introduced
is evidently an equivalence relation. With respect to this equivalence
relation the totality of funetion elements (f,Q) with 2 € © falls into well-
defined equivalence classes which we call the enalytic branches at z. It is
easy to see that they can be identified with all power series in z — 2o with
a positive radius of convergence. We will denote the branch at zo deter-
mined by the function element (f,0) as (f,z0).

For a global analytic function £ we pick out the branches (f,20) deter-
mined by function elements (f,2) € f and call them the branches of f at z,,
To every branch there corresponds a unique function value f(zo) as well
as unique values of the derivatives f'(zo), f"(z0), . . . . In anslogy to
the construction of Riemann surfaces of elementary multiple-valued
functions we introduce a set § (the Riemann surface) whose elements 3
(the points) are the branches (f,z) of £ We are then in a position to
consider f as a single-valued function £(3) on §. The function z = p(3)
which to every 3 = (f,2) assigns the uniquely determined value z is called
the projection of § into the complex plane, and z is the #race of ;.

The consideration of the Riemann surface is not of much use unless
we can say when a function is continuous on §. Since continuity can
be expressed in terms of neighborhoods, it is sufficient to define neighbor-
hoods on §. Given 30 = (fo,20), determined by the function element
(fo, %o} € £, we choose a neighborhood V @, of 2, and consider the sei B
of all branches (fo,2) with ze V. By definition, 8 will be a neighbor-
hood of 3;. 1t follows readily that £(3) and p(3) are continuous functions
in ihe sense that there exists, for any given ¢ > 0, a neighborhood B with
the property that |[f(;) — f(z0)] < ¢, |p(3) — pGe)| < & for all 3€ B,

By the introduction of Riemann surfaces we gain a very simple inter-
pretation of subordination. Let § and ® be the Riemann surfaces of f and
g. Then f is subordinate to g if and only if there exists a continuous
mapping ¢ of § into & such that ; and ¢(3) have the same projection ¢; the
proof is immediate. We observe that the mapping ¢ is not necessarily
unique, which means that f may be subordinate to g in different ways.
In a language which appeals to the imagination the existence of a projec-
tion preserving mapping implies that the surface § can be spread out over
@, or that § may be considered as a Riemann surface relative to .

We note finally that our definition of Riemann surfaces is provisional
in as far as it does not yet include the case of branch points.

1.3. Analytic Continuation Along Arcs. We consider a global ana-

lytic function f with the Riemann surface § and an arc v in the complex
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plane with the equation z = 2(f), « £ 1 £ 8. SBuppose that there exists
on § an arc ¥ whose projection is v: we mean by this that ¥ has an equa-
tion 3 = 3(f) with p(G(#)) = 2{f) for all {. The fundamental assumption
that + is an arc means of course that §{f) is continuous with respect to the
neighborhoods introduced on §.

Tt is desirable to give a parallel interpretation which does not refer
explicitly to the Riemann surface. To each ¢ there corresponds a 3 with
the projection z(f) and, therefore, a branch of the form (f,z(f)). For a
given fp this branch is determined by a function element (f,25) with
z(to) € Qo A neighborhood consists of branches (f,,2), and the continuity
of z{f) evidently implies the existence of a & > 0 such that for |t — & < &
the branch (f,2(#)} is determined by the function element (fi, ). When
this is the case, we shall say that the branch (f,z{f)} and any one of the
corresponding function elements have been obtained by continualion
along the arc v.  According to this terminclogy there iz complete equiva-
lence between continuations along v and arcs ¥ on § which project into ~.

The continuation along an arc corresponds to the intuitive notion of &
continuously changing branch. The existence of a continuation is not
guaranteed, but the following important uniqueness theorem is valid:

Theorem 1. Two continuations (f,2{1)} and (f2,2(f)) of o global analytic
Junction £ olong the same arc v are either identical, or else they differ for all &

Consider the subset E of the closed interval (e,8) in which

(f1,2(1)) = (fo,2(1)).

Choose ;€ £ and suppose that the corresponding branches are deter-
mined by function elements (1,020, (f3). By assumption ff = f2 in
a neighborhood of z(t;). If ¢ is sufficiently near to e, the point z(¢) lies
in this neighborhood; moreover, we can choose fi = f3, f; = f3, and it
follows that the branches (fi,z(f)), (f22({)) are identieal. This result
shows that the complement of K is closed. Suppose now that {; is not
in . With the same notations, f%(z) and f2(2) are not identical in any
neighborhood of z(tg). Consequently there exists a neighborhood A of
#(to) In which f(z) = f3(z), except perhaps for z = 2{{g). Tor ¢ suf-
ficiently near to fp 2(f) € A, and we may take f1 =73, fo = f3. But if
2(D) = z(ts) the branches (f},2(f)) and (f5,2(1)) are different for the simple
reason that fi(z{(f)) = f(z()), and i 2(f} = 2({c) they are different by
assumption. It follows that E itself is closed, and since the interval is
connected the theorem is proved.

By virtue of this theorem s continuation is uniguely determined for
instance by its initial branch (fo,z()). We may therefore speak of the
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continuation of f along v from the initial branch (fo,2(c)), provided only
that such a continuation exists,

If v is an arbitrary arc and f a global analytic function, it may well
happen that f does not have sny continuation along v, or that a con-
tinuation exists for some initial branches, but not for all.  Let us investi-
gate the case of an initial branch (fo,2z{a)) which cannot be continued
along v. If{; > eissufficiently near to o, there will exist a continuation

of the initial branch along the subarc corresponding to the interval (a,t)); §
indeed, this is trivially the ease if the subarce is contained in the region 9, §

of the funetion element (f,8%). The least upper bound of all such ¢ is

a number 7 which satisfies & < 7 < 8, and it is easily seen that the con-

tinuation will be possible for {, < 7, impossible for 4, = =. In a cerisin
sense the subare corresponding to {(a,7) may be said to lead to a point
at which f ceases to be defined. In particular, if fis a complete analytic

function, the subare is called a singular path from the given initial branch; |
less precisely, it is said to lead to a singuler point of £.  The term singu-

lar point should be used only when the corresponding path is clearly
indicated.

The connection between continuation along arcs and stepwise continu-
ation by means of a chain of direct anslytic continuations requires further
illumination. In the first place, if {(f;,@), (f,22), . . . , (f-,%) is a chain
of direct analytic continuations, it is always possible to connect a point
z1 € to a point 2, € @, by means of an arc v such that £ has a continu-
ation along -y with the initial branch (fi,z;) and the terminal branch
(fuyzn). Indeed, it is sufficient to let v be composed of a subare v, C &
from z; to a point 2, € @, \J s, 8 second subare v, C @y from 2, to zs €
Q2 \J 25, and 50 on.  The continuation along v is completely defined by
setting 3(f) = (fi,z(f)) on .

Conversely, if a continuation 3(f) is given, we can find a chain of direct
analytic continuations which follows the arc « in the same way as in the
preceding eonstruction, provided merely that f is defined by means of a
sufficiently large collection of function elements. By means of Heine-
Borel’s lemma it is shown that the parametric interval ean be subdivided
into (e,t1), {tnts), . . ., (ta-2,0) such that 3(f) = (fi,2(t)) In (L) for
suitably chosen function elements (f,%). Although (fi_,,Q% ;) and
{(f+,%%) need notl be direct analytic continuations of each other, they are
at least direct analytic continuations of their common restriction to a
neighborhood of z{t, ;). If these restrictions are contained in the collee-
tion f, and this is certainly the casc if f is a complete analytic function,
then we can find a chain of direct analytic continuations with the desired
properties.

In order to illustrate the use of continuations along arcs we will give
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a definition of log # as a complete analytic function. We define it as
the collection of all function elements (f,%2) such that ¢ = 2in 0, It
must be proved that this collection is completfe,

We have to show that any two function elements (f1,%2), (f5,{%:) in the
collection can be joined by a chain of direct analytic continuations.
Because of the permanence of functional relations it is clear that the
intermediate function elements will belong to the same collection.

Choose pointe z; € @, 22 € 225, and join them by a differentiable arc

which does not pass through the origin. This is possible since neither
z; nor zz can be 0. Consider the function
r2'(1)
« 200
By differentiation, z(f)e#¥ is constant; for ¢ = a the value is 1, and
hence e® = z(f). Tor a given ¢ there exists, in any neighborhood of
z(f) which does not include the origin, a uniquely determined branch
f(z} of log z which takes the value ¢(f) for z = 2(). It is clear that
(f,2(0)) defines a coniinustion along v. The terminal branch may not
coincide with fa, but its value must differ from fy(22) by a multiple of 2#7.
In order to obtain the right value at z; all that remains is to continue the
terminal branch along a closed curve which circles the origin a suitable
number of times. Finally, the arewise continuation can be replaced by
a finite chain of direct analytic continuations, and it is proved that log 2z
iz a complete analytic function.

o) = filz) +

EXERCISES

1. Define log f{z) for a single-valued f(2) 0.

2. If a funciion element is defined by a power geries inside of its circle
of convergence, prove that the corresponding complete analytic function
has necessarily & singular path in the circle of convergence which leads to
a point on the circumference. (‘A power series has at least one singular
point on its circle of convergence.’’)

1.4. Homotopic Curves. We must now study the topological proper-
ties of closed curves in a region from a point of view which is funda-
menisl for the theory of analytic continuations. The question which
interests us is the behavior of an arc under confinuous deformations.
From an infuitive standpoint this is an extremely simple notion. If
71 and -y, are two ares with common end points, contained in a region Q,
it is very natural to ask whether ¥, can be continuously deformed into v,
when the end points are kept fixed and the moving arc is confined to Q.
For instance, in Fig. 38 the arc v, can be deformed into vy, but not into
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FIG. 38. Homotopic arcs,

43 Two arcs which can be deformed into each other are said to be
homotopic with respect to €. This is evidently an equivalence relation.

A precise definition must of course be given. Fortunately, the physi- 3
cal conception of deformation has an almost immediate interpretation in
mathematical terms. It is indeed clear that a deformation of an arc can |
be described by means of a continuous function z = 2z(f,u) of two varia- §
bles where the point (t,u) ranges over a rectanglea £t < 8,0 2w = 1. 4
To every fixed value u = wu, there corresponds an arc z = 2(f,us), and
the effect of the deformation is to change the initial arc z = z(3,0) into 3
z = 2{1,1}. The deformation takes place within Q if z(¢,u} € © for all (t,u),

and it is a deformation with fixed end points if 2{a,u) and 2(8,2) are con-
stant. 'To every fixed value ¢ = ¢ there corresponds an arc z = 2(lo,u)

with u as parameter which may be called the deformation path of the point

corresponding to f.  Figure 39 illustrates the effect of a deformation.
We are led to the following definition of homotopy:

Two arcs v1 and vs, defined by equations z = z:(f) and & = 2x(t) over the
same paramelric interval o <t £ B, are said to be homotopic in S if there

exists a continuous function z(t,u) of two varicbles, defined for a =t = B,
0 = u =1, with the following properties:

1. z(t,u) € 2 for all (t,u).

2. 2(t,0) = 21(0), 2(t,1) = z:(Dfor all L.

3. 2(eyu) = z1(a) = 2:(), 2(6,u) = 21(B) = z2(B) for all w.
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It is only for the sake of conveniend¢e that we have required the para-
metric intervals to be the same. If this is not the case we transform the
intervals into each other by a linear change of parameter, and agree to
consider the original arcs as homotopic if they are homotopic in the new
parametrization,

Simple formal proofs which the reader can easily supply show that the
relation of homotopy, as defined above, is an equivalence relation. We
can thus divide all arcs into equivalence classes, called homotopy classes;
the arcs in a homotopy class have common endpoints and can be deformed
inte each other within . It deserves to be pointed out that different
parametric representations of the same arc are always homotopic.
Indeed, 2 == 2;{t) is a reparametrization of 2 = z:(f} if and only if there is
a nondecreasing function 7(f) such that z:(f} = 2.(r(2)). The function

z(tbw) = z1((1 — Wt + wr(t))

has all its values on the arc under consideration, and therefore in . For
u = 0 and % = 1 we obtain respectively 2(,0) = 2,({) and

4,1} = 2:{r (D)) = 28

as required, and the end points are evidently kept fixed.

If two arcs v, and -y are traced in suecession, with v; beginning at
the terminal point of «,, they form a new arc which we will now denote
by yry: in contrast to the notation vy, + vs preferred in homology theory.
The parametrization of yry: is not uniquely determined, but for the
determination of the homotopy class this is of no importance. Very
simple reasoning shows, moreover, that the homotopy class of ~viye
depends only on the homotopy elasses of v, and vs. By virtue of this
fundamental fact we may consider the operation which leads to the
homotopy class of vy, as a multiplication of homotopy classes. It is
defined only when the initial point of w; coincides with the terminal
point of 1. If we restrict our attention to the homoiopy classes of
closed curves which begin and end at a fixed point zp, the product is

/3

FiG. 33. Deiformation.
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always defined and is represented by a curve in the same family. What
is more, with this definition of product the homotopy classes of closed
curves from ze, with respect to the region Q, form a group. In order to
prove this assertion we must establish:

1. The associative law: (yyy2)y; is homotopic to v (yxys).

2. Existence of a unil curve 1 such that 41 and 1y are homotopic to .

3. Existence of an inverse 4! such that vy~* and 1y are homotopic
to 1.

The associative law is trivial since (y1v2)7vs is at most a reparametriza-
tion of vi(yzvs). For a unit curve we can choose the constant z = z;

actually, the symbol 1 may represent any closed curve which can be

shrunk to the point zp. Finally, the inverse 4! is the curve - traced in
the opposite direction. If v is represcnted by z = 2(f), a St < 6, v §
can be represented by z = 2(28 — £}, 6 St £ 26 — a. The equation of 4

vy ! 1s thus
z = z(f) fora st =p
228 —1) forf =t228 —

i

The curve can be shrunk to a point by means of the deformation

2(tu) = z(t) fora S¢S e+ (1 ~u)p
z(tu) =z(ue + (A —wp) foruwa+ (1 —uwp=tsuB—a)+8
z(tu) = z(26 — ) foru(@—a) + B SIS 26—c.

The interpretation is clear: we are letting the turning point recede from
#(B) to z(e). Since 2z(t,1) = z{a) = 2, we have proved that ¥y ! is
homotopic to 1. The proof is independent of the hypothesis that v be a §

closed curve; thus yy~! is homotopic to 1 for any arc y from 2.

The group which we bave constructed is called the homotopy group, or §
the fundamental group, of the region @ with respect to the point zp. As
an abstract group it does not depend on the point zp. If 2 is another §
point in €, we join 2, to 2, by an arc ¢ in 2. To every closed curve v §
from z{ corresponds a closed curve ¥ = ey'c¢™! from z,. This correspond- }
ence is homotopy preserving and may thus be regarded as a correspond- §
ence between homotopy classes. As such it is product preserving, for §
{cyie Veyie ™) i1s homotopic to c(yjyi)e™!, by cancellation of ¢ % §
Finally, the correspondence is one to one, for if v is given we can choose §
7' = ¢ 'yc and find that the corresponding curve ¢y'e™! = (ccDy(cc™) §
is homotopic to v. It is thus proved that the homotopy groups with

respect to 2o and 2{ are ¢somorphic.

If v, v2 are any two arcs with the initial point z, and a common
terminal peint, then v, is homotopic to v: if and only if y1yz* is homotopic §
to 1. For if 41 is homotopic to v, then yry;? is homotopic to vey7?, and
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hence to 1.  Conversely, if v;v;! is homotopic to 1, then

(vivaDrz = vilvz'ye)

is simultaneously homotopic to v, and s, proving that «; is homotopic
t0 v2. For this reason it is sufficient to study the homotopy of closed
curves.

The explicit determination of homotopy groups is simplified by the
fact that the homotopy group is obviously a topological Invariant.
Indeed, by a topological mapping of Q onte @ any deformation in 9 can
be carried over to € and is seen to determine a preoduct preserving one-
to-one correspondence between the homotopy classes. Topologically
equivalent regions have therefere isomorphic hometopy groups.

The homotopy group of a disk reduces to the unit element; this means
that sny two arcs with common end points are hemotopic.  The proof
makes use of the convexity of the disk: the arc 2 = 2:1(f) can be deformed
into z = 23(f) by means of the deformation

z(fu) = (1 — u)zs(f) 4+ uzo(t)

whose deformation paths are line segments. The same proof would be
valid for any convex region. In particular, the whole plane has likewise
a homotopy group which reduces to the unit element.

We proved in Chap. 6, Sec. 1, that any simply connected region
which iz not the whole plane can be mapped conformally onto a disk.
In this connection the conformality is not important, but the fact that
the mapping is topological permits us te eonclude that any simply con-
nected region has a fundamental group which reduces to its unit element.
We shall find that the converse is also true.

1.5. The Monodromy Theorem. Let Qbe a fixed region in the z-plane.
We consider the case of a global analytic function £ which can be con-
tinued along all arcs 4 contained in Q, starting with any branch defined
at the initial point of v. More precisely, to any arcz = z(t}, « St = B,
contained in £, and for every function element (fe,f2) € f with 2(c) € Qo
there shall exist a continuation 3(f) = (f,2(f)} whose initial branch is the
one defined by (fo, Q).

When two arcs ¥y, 7y with common end peints are given, we are
interested to know whether a common initial branch, continued along
¥: and 7y, will lead to the same terminal branch. The basic theorem,
known ag the monodromy theorem, is the following:

Theorem 2. If the arcs v and v, are homotopic with respect to Q, and &f
an tnitiod branch of £ can be continued along all arcs contained in Q, then
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the continuations of this initicl branch along y1 and v, must lead to the seme
terminal branch,

To begin with we note that continuation along an arc of the form yy—*
will evidently lead back to the initial branch. Bimilarly, continuation
along an arc of the form o,(yy")e: will have the same effect as continu-
ation along oyw,. For this reason, to say that the continuations along
71 and #; lead to the same terminal branch is equivalent to saying that 1
continunation along vyyyz! leads back to the initial element.

According to the assumption there exists a deformation 2(t,u) of v;
into v.. Every arc ¢ in the deformation rectangle R is carried by z(¢,w) |
into an arc o’ €, and if ¢’ begins at the initial point of v, and . there
exists a unique continuation of the given initial branch along ¢’. TFor §
the sake of simplicity it will be called s continuation along ¢. The
theorem asserts that the continuation along the perimeter T of R leads
back to the initial element. The sense in which I' is described is imma- §
terial, but should be fixed once and for all. |

A simple proof can be based on the method of bisection. We begin
by bisecting R horizontally, and denote by ; the perimeter of the lower 4
half R;, described from the lower left-hand corner 0 and in the direction 4
which coincides with the direction of T along the common side. With
the upper half R, we associate a curve r; which begins at 0, leads vertically
to the lower left-hand corner of R, describes the perimeter of R in the
sense which eoincides with that of I along the common side, and returns
vertically to 0 (Fig. 40). We recognize that the curve e differs from
T only by an intermediate arc of the form ¢o~1. TFor this reason the
effect of continuing along = s is the same as if we continue along T.

Consequently, if m; and o2 both lead back to the initial branch, so does I'.
We make now the opposite assumption that T' does not lead back to the
initial branch. Then either u, or w5 has the same property. The corre-

no =
— |—=
|~ [ |

FiG. 40. The monodromy theorem.
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sponding rectangle is bisected vertically, and the same reasoning is
applied. When the process is repeated, we obtain a sequence of rectan-
ges RDRY DOR® D - -+ DR™ D - - - and corresponding closed
curves #»™ such that the continuation of the initial branch slong # does
not lead back to the same branch. Each #™ is of the form ¢TI0 where
o 18 8 well-determined pelygon leading from 0 to the lower lefi-hand
corner of ™ and T, denotes the perimeter of E™; moreover, e, is a
subare of o4,

As n— o the rectangles R™ converge to a point P, and the poly-
gons o, form, in the limit, & continuous curve o, ending at P,. There
exists & continuation of the initial branch aleng ¢, which terminates
with a branch (f.z(F.)} at the point corresponding to P,. For suf-
ficiently large » the image of I', will be contained in a neighborhood I' of
2(P..), and the branch obtained at the terminal point of ¢, must be
determined by the function element (f.,A). When this is the case, the
element (f,,A) can be used to construct a continuation along 7™ which
leads back to the initial branch. This contradicts the property by which
¢ was defined, and we have proved that the continuation along T' must
end with the initial branch,

The monodromy theorem implies, above all, that any global analytie
function which can be continued along all ares in a simply connected
region determines one single-valued analytic function for each choice of
the initial branch. This fact can also be expressed by saying that a
Riemann surface (without branch points) over a simply connected region
must congist of a single sheet.

We cap further draw the consequence, already announced, that a
region whose homotopy group reduces to the unit element must neces-
sarily be simply connected. For suppose that £ is multiply connected.
Then there exists a bounded component ¥, of the complement of @, and
if z0€ Ky we know that log (z — z,) is not single-valued in 2. By the
monodromy theorem it follows that the homotopy group of £ cannot
reduce to the unit element.

This is the last step toward proving the equivalence of the following
three characterizations of simply connected regions: (1)  is simply con-
nected if its complement is connected; (2) @ is simply connected if it is
homeomorphic with a disk; (3) € is simply connected if its fundamental
group reduces to the unit element.

1.6. Branch Points. For = closer study of the singularities of multiple-
valued functions it is necessary to determine, explicitly, the fundamental
group of the punctured disk. Let the punctured disk be represented by
0 < |z] < 1, and consider a fixed point, for instance the point 2z, = 7 on
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the positive radius. By means of a central projection, given by

2w}y = (1 — wz() + ur K08
E0]
any closed curve z = 2(f) from 2o can be deformed into a curve which
ll'eS on the circle |2| = r. 1t is thus sufficient to consider curves  on this
cirele. The equation of v will again be written as z = z(1). ?

By continuity every fp has a neighborhood in which |2(0) — 2(t)] <
7/2; In such a neighborhood z(f) cannot take both the values r a-ndc —r
I.t follows easily, by use of Heine-Borel's lemma or the method o.f bisec;
tion, that it is possible to write YT = Y1¥z * * " va Where each 44 either
does not pass through r or does not pass through —r, TFor simplicify
let us refer to the points r and —r by letters PPy and Py (Tig. 41}, and leé
'the end points of v, be denoted by Py and Py Since w, is céntained
in the. simply eonnected region obtained by deleting either the positive or
negative radius, it can be deformed into one of the two ares PyP, 1 As
a re?ult v ean be deformed into a product of simple ares with tnl':LE; suc:-
cessive end points Py P,P, - - - PP, This path may in turn be replaced
by POP1P2POP2P3PQ e PoPn_lP,,Puwhereeach arc PkPg&ﬂd P()Pr;is
for dt?ﬁniteness, the one which does not contain P In fact, the ﬁe“,r
path is obtained by inserting the doubly traced ares PoP.P. }\Vhi(}h we
know to be homotopic to 1.

Wg have shown that each v is homotopice to a product of elosed curves
of the fo_rm PoPiPriiPo. If PiPryy does not contain Py, this curve is
h01110top1f: to 1. If, on the other hand, P.P, contains Py it is seen by
cnumeration of the possible cases that the curve is homotopic to € or €1,

where C is the full eircle, Consequently, every closed curve is hometopic
to a power of (.

FHG. a1,
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Finally, we obgerve that C™is homotopic to L only if m = 0. Thisis

seen by the fact that
dz

o =T 2w,
while if the curve were homotopic to 1 the integral would have to vanish.
From our results we conclude that the fundamental group of the punc-
tured disk is isomorphic to the edditive group of infegers. FEvidently, an
arbitrary annulus has the same fundamental group.

We consider now a global analytic function { which can be continued
along all arce in the punctured disk 0 < |z] < 1. We choose an initial
branch at 2z, = 7 and continue it along the curves ¢ Either the con-
tinuation never returns to the initial branch, or there exists a smallest
positive integer h such that (% leads back to the initial branch. In the
lkatter case, set m = gh 4+ v with 0 £ r < h. If O leads back to the
initial branch, so does C". But since 7 < k that is possible only if » = 0,
and we find that €™ leads to the initial branch if and only if m is a multiple
of k.

Consider the mapping z = P of 0 < |f] <1l onto 0 < |g| < 1. We
claim that f can be expressed as a single-valued analytie function F({)
in the punctured disk of the ¢-plane. The precise sense of this state-
ment is that there exists, for every ¢, 0 < |6| < 1, a function element
(/) ef with {2 €, such that F({}) = f({*) in a peighborhood of {5 in
particular, it is required that the function element which corresponds to
the point ¢y = ' determines the initial branch at z.

In order to construct F(t), we join { to ¢ by an arc ' and continue
the initial branch of f along the image of 4" under the mapping z = {*;
we define F({) as the terminal value obtained through this continuation.
It must be proved that F(¢) is uniquely determined. If i and ] are
two paths from ¢ to §, then 1y, can be deformed into a power C’* of
the circle through ¢, Consequenily, the image curve yryz! can be
deformed into the image of C'*, which is %, But C** leads back to the
initial branch, and therefore ¢ and v, determine the same terminsl
branch. Finally, if { is in a neighborhood of {;, we can first follow an
are vy from & to ¢ and then a variable arc 4 from ¢; to ¢ which stays
within the neighborhood. If the neighborhood is sufficiently restricted,
the continuation along the image of v is determined by = single function
element. (,0), and we have F({) = f(t*) in that neighborhood.

Sinee F(I) is single-valued and analytic in a punctured neighborhood
of the arigin, it has a convergent Laurent developrnent of the form

FO = ) A
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The corresponding multiple-valued function of 2 may be said to possess
the development

(1) [ = 3 Az,

It must be observed that this development depends on the choice of the
initial branch., Different initia]l branches may yield entirely different
developments and, in particular, different values of A, The series(1)
yields a total of & related developments obtained by choosing different
initial values of 2¥*.  If ¢ = ¢*7'/*, these developments are represented by

(2) fv(z) = i Anw"‘z"‘”‘ (V = 0317 "ot -'h - 1)

When the branch (f,,2¢) is continued slong C, it leads to the branch
(fs+1,%0) with the understanding that the subscript k is identified with 0.

In special cases the Laurent development may contain only a finite
number of negative powers. Then F(¢) has either a removable singu-
larity or a pole, and the multiple-valued function J(z) (or, more correctly,
the global analytic function obtained by continuing the given initial
branch within a punctured disk) is said to have an algebraic singularity
or brench point at, z = 0, provided of course that h > L. If F() has a
removable singularity, the branch point is an ordinary slgebraic singu-
larity, in the opposite case it is an algebraic pole. 1In either case f(2)
tends to a definite limit A or « as z tends to 0 along an arbitrary arc.

Clearly, we could just as well have studied an isolated singularity at
an arbitrary point a or «, and the radius of the punctured disk can be
as small as we wish. In the case of a finite h the correspondence between
w = f(z) and the independent variable z can be expressed through equa-
tions of the form

¥ Agn

e=a+*  or z={h

w

The variable ¢ takes the name of local uniformizing variable.

In the case of an algebraic singularity it is desirable to complete the
Riemann surface of f by the inclusion of a corresponding branch point
on the surface. The projection of this point will be a, and the point
itself is not determined by a branch of f, but by developments similar to
(2). Finally, a neighborhood is formed by the branches which corre-
spond to points ¢ in a neighborhood of ¢ = 0. From now on it will ba
assumed that the Riemann surface of a global analytic function includes
all such branch points,
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2. ALGEEBRAIC FUNCTIONS

An equation of the form P(w,2) = 0, where P is a polynomial in two
variables, has for each z a finite number of solutions wi(2), . . . , w.(2).
We wish to show that these roots ean be interpreted as values of &
global analytic function f(2) which is then called an algebraie function.
Conversely, if a global analytic function is given, we want to be able to
tell whether it does or does not satisfy a polynomial equation.

2.1. The Resultant of Two Polynomials. A polynomial P(w,z) in two
variables is drreducible if it cannot be expressed as the produet of two
polynomials none of which is constant. Two polynomials P and ¢ are
relatively prime if they have no common factor except for constants.

The following theorem is algebraic in character. Because of its
fundamental importance for the theory of algebraic functions we will
nevertheless reproduce its proof.

Theorem 3. If P(w,2) and Q(w,2) are relatively prime polynomials, there
are only a finite number of values z¢ for which the equations P(w,z) = 0
and Q(w,z) = 0 kave a common rodt,

We suppose that P and @ are ordered according to decreasing powers
of w and set Q(w,2) = bo(z}uw™ + - - - + b,.(2) where bg(z} is not identi-
cally zero. If P is divided by @, the division algorithm yields a guotient
and remainder which are polynomials in w and rational functions in z.
We set up a Euclidean algorithm of the form

coP = g} + B
o) = gl + B
3) ety = qofts + R

...............

C‘l’l.—lRﬂ—2 = Qﬂ—an—l + Ru

where the @ and K; are polynomials in w and z while the ¢ are poly-
nomials in z used to clear the fractions. The degrees in w of the K, are
decreasing, and K, is a polynomial in z alone., If B,.(z) were identically
zero, the unigue factorization theorem implies, by the last relation in (3),
that F._» would be divisible by any irreducible factor of K,._; which is of
posttive degree in w. The same reasoning shows, step by step, that all
the R, as well as ¢ and P would be divisible by the same factor. This is
contrary to the assumption, for R._; is of positive degree in w and must
therefore have an irreducible factor which contains w,
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Suppose now that P(weze) =0 and Qw2 = 0. Substituting
these values in (3) we obtain Ey(wnzo) = 0, . . ., Rei{wezd = 0 and
finally B.(z0) = 0. But since I, is not identically zero, there are only a
finite number of z, which satisfy this condition, and the theorem follows.

The polynomial R.(z) is called the resultant of P and Q. More pre-
cisely, if we wish the resultant to be uniquely determined, we should
require that the exponents ¢ in (3) are of the lowest degree possible.  We
are not so interested in the resultant as in the statement of Theorem 3.
The theorem will be applied to an irreducible polynomial P{w,z) and its
partial derivative P,.(w,z) with respect to w. These polynomials are rela-
tively prime as soon as F has positive degree in w, and the resultant of
P and P, is called the discriminant of P. The zeros of the discriminant
are the values z; for which the equation P(w,zp) = 0 has multiple roots.

We note, finally, that the resultant E(z) of any two relatively prime
polynomials P and @ can be written in the form B = pP 4 ¢@ where
p and ¢ are polynomials. This follows unmediately from (3).

2.2, Definition and Properties of Algebraic Functions. We begin
by formulating a precise definition:

Definition 2. A4 complete analytic funetion £ s called an algebraic func-
teen if ell dts function elements (f,9) satisfy a relation P(f(z),z}) = 0in Q,
where P(w,z2) is @ polynomiel which does not vanish identically.

Because of the permanence of functional relations it is sufficient to
assume that one function element satisfies the equation FP(f{2)},z) = 0.
The others will then automatically satisfy the same relation. Moreover,
it may be assumed that P(w,z) is an irreducible polynomial. Suppose
indeed that P(w,z) has the factorization P = P1P2 . . . Pninirreducible
factors. Tor any fixed point z € one of the equations P(f(2),2) = 0
must hold. If we consider a sequence of different points z, € 2 which
tend to a limit in €, then one of the relations Pr(f(2.),2,) must hold
infinitely often. It follows that this particular relation Pr(f{2),2) = 0 is
satisfied identically in @ and, consequently, by all ihe funetion elements
of f. We are thus free to replace P by P:.

It is also easy to see that the Irreducible polynomial P determined by
an algebraic function is unique up to a constant factor. 1If § is an essen-
tially different irreducible polynomial, we can determine the resultant
R(z) = pP + qQ. It P(f(2),2) = 0 and Q(f(z),2) = 0 for ull zeQ we
would obtain R(z) = 0in ©, contrary to the faet that R(z) is not identi-
cally zero. We note that P cannot reduce to a polynomial of z alone.
If it contains only w, it must be of the form w — @, and the function f
reduces to the constant a.
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We prove next that there exists an algebraic function corresponding
to any irreducible polynomial P(w,z) of positive degree in w. Suppose
that

Pwz) = aoldyu” + arl)w™' + - - - 4 aul2).

If 2; is neither a zero of the polynomisal a4(2) nor a zero of the diserimi-
nant of P, the equation P(w,z;) = 0 has exactly » distinet roots ws, ws,
« » Wn  Under this condition the following is true:

Lemma 1. There exists an open disk A, containing z, and n function ele-
ments (f,4), (f2,4), . . ., (Jo,A) with these properties:

(@) P(J(2),2) = Din A;
(B) flzo) = ws;
(¢} if P(w,2) = 0, 2z €A, then w = fi(2) for some 3.

The polynomial P{w,z;) has simple zeros at w = w,. We determine
¢ > 0 so that the disks |w — w4 < e do not overlap and denote the circles
lw — wi| = e by €. Then P(w,z0) # 0 on C;, and by the argument
principle

1 Po.(w,zp)
57 o Pl 0

If 2y is replaced by 2, the integrals become well~defined continuous fune-

tions of z in a neighborhood of z. Bince they can only take integer

values, there exists a neighborhood A such that

1 Py(w,z)

2mi fe: Plw,z) dw =1

for all zeA. This means that the equation P(w,z) = 0 has exactly one
root in the disk |w — wi| < &; we denote this root by fi(z). By the
residue caleulus its value Is given by

1 P.u(wz) ,
14e) = gz o, v Plws)

'This representation shows that fi(z) is analytic. Moreover, fi(ze) = w,
and {c) follows from the fact that we have exhibited n roots of the equa-
tion P(w,z) = 0, and it can have no more.

The lemma implies at once that there exists an algebraic funetion f
corresponding to the polynomial P; in fact, we ean choose f to be the
complete analytic function determined by the element (f,,A) for any z,
which does not coincide with one of the finitely many excluded points.
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We will show, moreover, that all such function elements belong to the
same complete analytic funetion; this will also prove that the function £
which corresponds to P is unique. Let (f,Q) be one of these func-
tion elements. There must exist a 2, € @ which is not one of the excluded
points; we determine a corresponding A. Since P( fle),2) =0 for zeQ,
it follows by () that f(z) equals some fd{z) at each point of AQ. But
then f(z) equals the same fi(2) at infinitely many points in any neighbor-
lood of z;, and hence (f,2) belongs to the complete analytie funetion
determined by (f.A).

Let the excluded points be denoted by ¢1, €5, . . . , €. We wish to
show that a funetion element (f,Q) which satisfies P(f(2),2) = 0 can be
continued along any arc which does not pass through a point ¢;.  If this
were not so there would exist an are 2 = 2(f), & < { < 8, such that a
given initial branch ean be continued along all subares ¢« = £ 5 7 < B,
but not along the whole arc. Set z, = 2(f), determine A according to
Lemma 1, and choose r so that 2(f) e Aforr = ¢{ £ 8. The same reason-
ing as above shows that the branch (f,2(r)) obtained by the continuation
must be determined by one of the function elements (f,4). But then it
can be continued all the way to 8, and we have reached a contradiction,

It has not yet been proved that all elements (f;,A) belong to the same
global analytie function.  For this part of the proof it is necessary to study
the behavior at the eritieal points ¢, in greater detail.

2.3. Behavior at the Critical Points. The points ¢, which so far have
been excluded from our considerations were the zeros of the first coef-
ficient eu(2) of P, and the zeros of the discriminant. Let & be chosen so
that the disk |z — ¢,| £ & contains no other critical points than ¢.. We
fix a point 2y # ¢ in this disk and select one of the branches fi(z) at
that point. This branch can be continued along all ares in the punctured
disk. Moreover, if it is continued along the circle € of center ¢ through
2e, we must return with a branch fi(z). Since there is only a finite num-
ber of sueh branches, it follows easily that there must exist a smallest
posilive integer h < n with the property that continuation along C* leads
back to the initial branch fi(z). By the fundamental result of Sec. 1.6
we ean write

@) 1O = Y Ade— o),

Suppose first that ¢, is not a zero of ap{z). Then fi{z) remains bounded
as 2z tends to . Indeed, as soon as fi(z) # 0, the equation P(fi(z),2) = 0
can be written in the form

6] aolz) + ar(2)fi(2) '+ - - -+ au@)file) ™ = 0.
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H fdz) were unbounded, there would exist points z, — ¢, with fi(z,) — .
Substitution in (5) would yield a(z.) — 0, contrary to the assumption
ao(er) # 0. It follows that the development (4) contains only positive
powers, and the branch fi(z) bas an ordinary algebraic singularity at e

We consider now the case where ao(es) = 0. If the multiplicity of the
zero is denoted by m, we know that m ae(2)(z — ¢r)™ # 0. From &)

ZCk

we obtain

ao@)(z — o)™ + ar(@(z — ey i) 4 - - -
+ a2}z — ) {2 = 0.

If the expression fi(z)(z — &)™ were unbounded, we would again be led
to a contradiction. As in Sec. 1.6 we write

F@) = 3 A

and find that F(){* is bounded. Consequently F({) has a pole of at
most order mk, and the branch f{z) has an algebraic pole at ¢ or, in
special cases, an ordinary algebraic singularity.

Tinally, the behavior at 2 = o« needs also to be discussed. Tt is clear
thal we have a development of the form

e = 3 e,

valid in a neighborhood of «. Suppose that the polynomial a;(z) is of
degree 7; (the coefficients which vanish identically will be left out of con-
sideration). Choose an integer m such that

® n > (= 1

fork =1, . .. ,n Weeontend that fi(z)z— must be bounded asz — .
Ii' this were not so we would have fi(z)~%™ — 0 for a sequence tending to
©. This would imply f.(z)"*2* — 0 and, by (6), fulz)*z+" — 0 for
k z 1. If (5) is multiplied by #— it follows that all terms except the
first tend to zero. This is a contradiction, and we may conclude that
fi(2) has at most an algebraie pole at infinity.

To sumn up, we have proved that an algebraic function has at most
algebraic singularities in the extended plane. We will now prove a con-
verse of this statement. In order to obtain a converse it is essential to
add an assumption which implies that there are only a finite number of
branches at a given point.
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Let f be a complete analytic function. For each ¢ we assume the
existence of a punctored disk A, centered at ¢, such that all branches of £
which are defined at a point 2, € A can be continued along all arcs in A
and show algebraic character at ¢. The assumption shall be satisfied
also for ¢ = o, in which case A is the exterior of a circle. Moreover,
for one A it must be assumed that the number of different branches at zg
is finite.

Sinee the extended plane can be covered by a finite number of disks
A, the center included, it follows that only a finite number of points ¢ can
be effective singularities; we denote these points by ex. It is easy to prove
ihat the number of branches at any point z # ¢, is constant. For every
such point has a neighberhood in which all branches of f are single-valued
and can be continued throughout the neighborhood. It follows that the
set of points z with exactly » branches is open (n can be finite or infinite).
Since the extended plane minus the points e, is connected, only one of
these sets is nonerapty. Hence n is constant, by assumption it cannot
be infinite, and it cannot be zero since in that case £ would be an empty
collection of function elements.

The branches at any point 2 # ¢, may now be denoted asfi(z), . . .,
fu(2), except that the ordering remains indeterminate.  We form now the
elementary symmetric functions of the fi{z), that is to say the coefficients
of the polynomial

(w —NHENw — f(2)) - - - (w — fu(2))-

These coefficients are well-defined functions of z, and obviously analytic
except for possible isolated singularities at the points ¢x.  As z approaches
cr we know that each f{z) may grow toward infinity at most like a nega-
tive power of |z — &]. The same is hence true of the elementary sym-
metric functions. We conclude that the isolated singularities, ineluding
the one at infinity, are at most poles, and consequently the elementary
symmetrie functions are rational funetionsof z.  If their common denomi-
nator 1s dencted by ao{z), we find that all branches fi(z) must satisfy a
polynomial equation

ao(w” + a(wr 4 - - - Fan(z) =0,

and it is proved that f is algebraic.

It is now easy to seitle the point which was left open in Sec. 2.2.  Sup-
pose that the function element (f,9) satisfies the equation P(f(z),z) = 0
where P is irreducible and of degree » in w. Then the corresponding
complete analytic function f has only algebraic singularities and a finite
number of branches.  According to what we have just shown £ will satisfy
s polynomial equation whose degree is equal to the number of branches. It

GLOBAL ANALYTIC FUNCTIONS 297

will hence satisfy an irreducible equation whose degree is not higher.
But the only irreducible equation it can satisfy is P(w,z) = 0, and its
degree isn. Therefore the number of branches is exactly n, and we have
shown that all solutions of P(w,z) = 0 are branches of the same analytic
function.

It remains only to collect the results:

Theorem 4. An analytic function is an algebraic function if ot has a finite
number of branches and af most clgebraic singularities. Every algebraic
Junction w = 1(2) satisfies on irreducible equation P(w,2) = 0, unique up
to a constant factor, and every such egquation determines a corresponding
algebraic function uniquely.

Tt is also customary to say that an irreducible equation Plwz) =0
defines an algebraic curve. The theory of algebraic curves is a highly
developed branch of algebra and function theory. We have been able to
develop only the most elementary part of the function theoretic aspect,

EXERCISE

Determine the position and nature of the singularities of the algebraic
function defined by w? — 3wz 4+ 22% = 0.

3. PICARD'S THEOREM

In this seetion we shall prove the celebrated theorem of Picard, which
asserts that an entire function omits at most one finite value. We shall
prove it as an application of the monodromy theorem (Sec. 1.5}, using the
modular function Az) (Chap. 7, Sec. 3.5) in an essential way. This is
Picard’s own proof. Many other proofs have been given which are more
elementary in that they need less preparation, but none is as penetrating
as the original proof.

3.1. Lacunary Values. A complex number g is said to be a lacunary
f)alue of & function f(z2) if f(z) s o in the region where f is defined. For
Instance, 0 is a lacunary value of € in the whole plane.

Theorem 5 (Picard). An entire Junction with more than one finite lacu-
nary value reduces to o constant.

We recall that an entire function f(z} is one which ig analytic in the
whole plane. If a and b are distinet finite values and if f(2) iz different
from @ and b for all 2, we are required to show that J(2) is constant.
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Consider f1(z) = (f() — @)/(b — a). This function is_et%tire and #0
and 1. Tf fiis constant, so is f. Therefore it is no restriction to assume
from the beginning that ¢ = 0, b == 1. .

We shall define a global analytic function h whose funetion elements
(1,9 share the following property: Im h(z) > 0, and Mh(2)) = &) for
z€§. Here A7) is the modular function defined in Chap. 7, See. 3.5.
It will be shown that h can be continued along all paths. Since the plane
is simply connected it will follow by the monodromy-theorem t-.hat h
defines an entire function h(z). Because h(z) has all its values in the
upper half plane, ¢* is bounded. By Liouville’s theorem h must reduce
to a constant, and so does f(z) = A(R(2)).

By Theorera 7 of Chap. 7 there exists a point 7 in the upper half plane
such that AM(re) = f(0). Beeause X (7o) # 0, by the same theorem, there
exists a local inverse of A, defined in a neighborhood A, of F(0) and denoted
by 7', characterized by the conditions AAF (w)) = w in A, and

AFHIO0) = 7o

By continuity there is a neighborhood €, of the origin in which f(z) € Ag,
and we can therefore define h{z) = X'(f(2)) in @, We sha]l.let h be the
complete analytic function obtained by continuing the function element
{(h,Q) in all possible ways. '

We have to show that the element (£,2;) can be continued along all
paths, and that Im h remains positive. If this were not true we could
find a path z = 2(f), 0 £ ¢ £ &, such that h can be continued sjnd Im b
remains positive up to any ¢ < t,, while either h cannot be (?ontmued up
1o £, or else Tm h(z(#)) tends to 0 for £— ¢;.  We can determine 2 value 7y
with Alre) = f(z(t)) and a loeal inverse Ay' with .)\r‘ (fz{t))) = 71
defined in a neighborhood A; of f(z(£,)).  Let @) be a neighborhood of z(f)
in which f(z) € Ay, and choose f» < 1 so that z(f) € Ay for t: =& = b
We know that A(r) has the same value f(z(t;)) at 7 = hgz(tg)) and at
7 = M MF((t2))). Hence, by Theorem 8 of Chap. 7, there exists a modular
transformation 8 in the congruence subgroup mod 2 such that

ST FeENN = hlzlta)).

We now define ky in @1 by ha(z) = STNAEN]. Tt is evident that (hy,$)
is a continuation of b up to ¢ which satisfies A(hi(2)) = f(2) and Im hy > 0.
We conclude that h can indeed be continued along all paths, and as we
have pointed out, Picard’s theorem follows at once. -

We have earried out the proof in such painstaking detail in an effort
to convince the reader that the monodromy theorem plays as essential a
role in the proof as the modular function.

L P a s A B . " o n e et e
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4. LINEAR DIFFERENTIAL EQUATIONS

The theory of global analytie functions makes it possible to study, with
a great degree of generality, the complex solutions of ordinary differential
equations.  Of all differential equations the finear ones are the simplest,
and also the most important. A linear equation of order » has the form

fr drly
M) aold) 7 + @) ooy

o () 37‘” + an(ew = b(2)
where the coefficients a,(z) and the right-hand member b(z) are single-
valued analytic functions. In order to simplify the treatment we restrict
our attention to the case where these functions are defined in the whole
plane; they are thus assumed to be entire functions. A solution of (7) is
a global analytic function f which satisfies the identity

(8) aof®? + af=D - - - fog, f faf =1

We have already remarked that this is a meaningful equation and
that it is fulfilled as soon as a function element (f,Q) of f satisfies the corre-
sponding equation with £ replaced by . A function element with this
property will be called a local soludion,.

The reader who is familiar with the real ease will expect the equation
(8) to have n linearly independent solutions. This is so as far as local
solutions are concerned, but we must be prepared to find that different
local solutions can be elements of the same global analytic function.
In other words, in the complex case part of the problem is to find out to
what extent the local solutions are analytic continustions of each other.

The equation (7) is homogeneous if b(z) is identically zero. This is
the most important case, and it is the only one we will treat. Further-
more, we can assume that the coefficients ax(2) have no commeon zeros;
n fact, if z, were a common zero we could divide all coefficients by 2z — 2o,
and the solutions would remain the same. As a matter of fact, if we are
willing to consider meromorphic coefficients we may divide (7) by as(z)
from the beginning. Conversely, if an equation with meromorphic coef-
ficients is given, each coefficient can be written as a quotient of two entire
functions; after multiplication with the common denominator we obtain
an equivalent equation with entire coefficients. It is thus irrelevant
whether we do or do not allow the coefficients to have poles.

In the case n = 1 the equation (7) has the explicit solution

_ fol2) "
w =g aglz)™

The only problem is thus to determine the multiple-valued character of
the integral, a question which has already been treated. On the other
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hand, the case n = 2 is found to have all the characteristic features of
the general case. For this reason we find it sufficient to deal with homo-
geneous linear differential equations of the second order.

4.1, Ordinary Points. A point z is called an erdinary point for the
differential equation

N a2’ + a2’ + e(zjw = 0

if and only if @o(zo) 7% 0. The central theorem to be proved is the

following:

Theorem 6. If zo is an ordinary poinl for the equation (9), there exists
a lecal solution (f,2), 2o € Q, with arbitrarily described values f(zo) = by and
f'(zg) = by. The branch (f,z0) is uniguely determined.

We prefer to write (9) in the form
(10) w” = pw + g(2w

where p(z) = —a:i/aq, ¢(2) = —az/ae. The assumption means that p(2)
and g¢(2) are analytic in a neighborhood of z; for convenience we may
take 2o = 0. Let

1t P(2)=pu+p12+---+p7izrt+...
b g =qtaqgz+ - +ar+ -

be the Taylor developments of p(2) and g(2). - .
In order to solve (10) we use the method of indeterminate coef-
ficients. If the theorem is true, the solution w = f(z) must have a

Taylor development
2 f& =be+bezt+ > +bz*+ -
whose coeflicients satisfy the conditions

2bs = blpu -+ bogn
6bz = 2bypo + bupy + bage + bogu

am — Dby = (n — Dhueipo + (0 — Dbaapr + - - - + bipa
+ bosgo + bu—agr + + - F bogns

This already proves the unigueness. All that remains to_ prove is_ that
the equations (13) lead to a power series (12) with a I_)osmve radlus’t)f
convergence. It will then follow by permissible operations of term-wise
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differentiation, multiplication, and rearrangement that (12) is a solution
of the equation with desired initial values of § and f’.

Since the series (11) have positive radii of convergence, there exist, by
the Cauchy inequalities, constants M, and 7o > 0 such that

[pal = Mors™

1) lg.] < Mosn.

In order to show that (12) has likewise a positive radius of convergence,
is Is sufficient to prove similar inequalities

(15) b} £ My

for a suitable choice of M and 7.

The natural idea is to prove (15) by inductiononn.  In the first place
(15) must hold for n = 0 and n = 1; this leads to the preliminary con-
ditions |bo] £ M, |by| £ Mr ! which are satisfied for sufficiently large M
and sufficiently small r. Assume (15) to be valid for all subseripts <n-
In order to simplify the computations we choose r < ro; then the general
equation (13) leads at once to the estimate

n@n = Dbl £ MMJQA +2+ - 4 (0 — D)=+ (0~ Dri]
- MM, [@gﬁ (o - 1)?2] —

We have thus
2
[ba| < MM, («5 + %) o< MM, (g + 7-2) o

and (15) follows, provided that Mo(r/2 + r%) = 1. It is clear that this
and the preceding requirements are fulfilled for all sufficiently small .
The proof is complete.

There exist, in particular, local solutions fo(z) and fi(2) which satisfy
the conditions fu(zo) = 1, fi(z0) = 0 and fi(ze) = 0, fi(z0) = 1. Because
of the uniqueness the solution with the initial values by, b; must be
F(2) = befo(z) + bifi(z). Hence every local solution is a linear combi-
nation of fy(2) and fi(z). Moreover, the solutions fo(z) and fi(z) are
linearly independent, for if bofo(z) + bi1fi(2) = O we obtain first by = 0
by substituting z = 2, and subsequently b; = 0 sinee fi(z) canmot be
identically zero.

EXERCISES

1. Find the power-series developments about the origin of two linearly
independent solutions of w" = zw.
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2. The Hermite polynomials are defined by
Ha®) = (—1ye L ()
n dzm -
Prove that H,(z) is a solution of ' — 220" + 2nw = 0.

4.2. Regular Singular Points. Any point zp such that ae(ze) = 0 i
called a singulor point of the equation (§). If the equation is written in
the form (10), the sssumption means that either p(2) or g(z) has a pole
at zo, for we continue to exclude the case of common zeros of all the
coefficients in (9}.

There are different kinds of singular points. We begin by a pre-
liminary study of the simplest case which oceurs when gg{z) has a simple
zero. Under this hypothesis the functions p(z) and g{z) have at most
simple poles, and i we choose z, = 0 the Laurent developments are of
the form

p@ =P b potpet -
q(z)=g;—1+90+912+ e

This time, if we substitute

w=be+ bzt b+ - -
in (10), the comparison of coefficients yields

- P—Ibl = bog—l
2(1 —_— pml)bz = b],p{] + 51{1—1 + bo{lo
nn—1—pa)b, = (0 — Dboape+ (n — Dbgpr + - - -
+ blpnk? + bﬂ—lq—l + bn-'g’ql) + T + bDQ'n-—E

(16)

This system of relations is essentially different from (13). In the
first place, only by can be chosen arbitrarily, and hence the method yields
al most one linearly independent solution. Secondly, if ., is zero or &
positive integer, the system (16) has cither no solution or one of the &,
can be chosen arbitrarily.

Assuming that p_, is not zero or a positive integer we will show that
the resulting power series has a positive radius of convergence. As before
we use the estimates (14), choose M 2 |bo}, and assume (15} for sub-
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scripts <zn.  Under the auxiliary hypothesis 7 < 7, we obtain

nln — 1 — py) - b £ M [Mo [@E_w—l) r4 (n— 1)r2] + Iq_1|r]-

Inasmuch as (n — 1)/|n — 1 — p_4| isbounded, an inequality of the form
lb.] < Mrr(Ar + Br?)

will hold for all n. For sufficiently small 7 this is stronger than (15),
and the convergence follows.

As already indicated, the result is of a preliminary nature. Our real
object is to solve (10) in the presence of a regular sitngudarity at z,. This
terminology is used to indicate that p(z} has at most a simple and g¢(z)
at most a double pole at z,.

Under these circumstances it turns out that there are solutions of the
form w = z°g(z) where g(z) is analytic and #0 at z,(= 0). We make
this substitution in (10) and find, after brief computation, that g(z} must
satisfy the differential equation

17) g =(P—g§)g’+(q+%2—m“(a_ 1))9-

22

For arbitrary o this is of the same type as the original equation, and
nothing has been gained. We may, however, choose « so that the coel-
ficient of g has only a simple pole. If ¢(z) has the development

o) = -q";ég +

this will be the case if « satisfies the quadratic equation
(18) alec — 1) = psa — gp = 0,

known as the indicial equation. For such a our preliminary result shows
that (10) has a solution of the form zeg(2), g{0) 0, provided that
P-1 — 2 is not a nonnegative integer.

Let the roots of (18) be denoted by a; and ;. Then

eyt =pa+1

Or @ — a1 = p-1 — 21 + 1. Hence o is exceptional if and only if
@ — a1 18 a positive integer, Consequently, if the roots of the indicial
equations do not differ by an integer, we obtain two solutions 2o(2)
and z7g,(z) which are obviously linearly independent. If the roots are
equal or differ by an integer, the method yields only one solution.
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Theorem 7. If 20 is a regular singular point for the equation (9), there
exist linearly independent solutions of the form (2 — zo)ogi(z) and
{(z — zo)mgs(z) with g:1(0), g2(0) # O corresponding to the roots of the
indicial equation, provided that as — ay s not an inleger. In the case of
an iniegral difference az ~ «; 2 0 the existence of @ solulion corresponding
1o oy con still be asserted.

If one solution is known it is not difficult to find another, linearty inde-
pendent of the first. The methods which lead to a second solution belong
more properly in a textbook on differential equations. It is also impossi-
ble to treat the case of irregular singularities in this book.

EXERCISES

1. Show that the equation (1 — z)w” — 2z0" 4 n(n + Dw = 0,
where » is 8 nonnegative integer, has the Legendre polynomials

1

dﬂ.
Pn(Z) = '27;—”—' .EZ—" (22 e 1)"

as solutions,
2. Determine two linearly independent solutions of the equation

22z + Dw'” — 2w +w =0

near 0 and one near —1.
3. Show that Bessel’s equation zu” + v’ + 2w = 0 has a solution
which is an integral function. Determine its power-series development.

4.3. Solutions at Infinity. 1If au(z), auz), a(z) are polynomials, it iz
natural to ask how the solutions behave in the neighborhood of . The
most convenient way to treat this guestion is to make the variable trans-
formation z = 1/Z. Since

dw . dw
P
dw . dw &w
@ gty
equation (10) takes the form
d%w 1V dw 1
(19) a—-z-ﬁ = e (QZ—I + Z"zp (:’Z)) ““z-, -+ Zﬁ‘lq (Z) w.

We say of course that « is an ordinary point or a regular singularity for
the equation (10) if the point Z = 0 has the corresponding character for
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(19). Thus = is an oxdinary point if the coefficients in (10) have a
removable singularity at Z = 0; this is the same, by definition, as saying
that —(2z + 2?p(2)) and #*¢(z) have removable singularities at «. Simi-
larly, = is a regular singularity if these functions have, respectively, at
most a simple and a double pole at oo,

It is interesting to determine the equations with the fewest singu-
larities. If e is to be an ordinary point, g(z) must have at least four
poles, unless it vanishes identically. In the latter case p(z) can have as
few as one pole, and if the pole is placed at the origin we must have

p(2} = —2/z. The corresponding equation
P _ _2dw
de? 2z dz

has the general solution w = az~* + b.

If ¢(2) is not identically zero, there can be as few ag two regular singu-
larities. Tt is evidently easiest to place the singularities at 0 and =, and
for this reason we turn immediately to the case where « ig a regular
gingularity. If there is to be only one finite singularity, placed at the
origin, we must have p(z) = A/z, ¢(z) = B/f2%. With another choice of
constants the equation can be written in the form

(20 2w — (a+8— Dz’ + afw =0

It has the solutions w = 2= and w = #%, where a and 8 are obviously the
roots of the indicial equation. If @ = 8, there must be another solution.
To find it we write (20) in the symbolic form

d 2
(2£ — ) w =0
and substitute w = 2W., We obtain
d dW
(za; — )2 I‘V = g z Ez—

2
(z-&% ~ a) #=W = z“'z-g;(zgdz—w)-

_ 2 ,
The equation (z diz) W = 0 has the obvious solution W = log 2, and

hence the desired solution of (20} is w = 2= log 2.

4.4. The Hypergeometric Differential Equation. We have just seen
that differential equations with one or two regular singularities have
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trivial solutions, It is only with the introduction of a third singularity
that we obtain a new and interesting class of analytic functions.

It is quite clear that a linear transformation of the varisble transforms
a second-order linear differential equation into one of the same type and
that the character of the singularities remains the same. We ean there-
fore elect to place the three singularities at preseribed points, and it is
simplest to choose them 8t 0, 1, and o,

If the equation

w” = pla)w’ + ¢()

is to have finite regular singularities only at 0 and 1, we must have
B

z—1

7 E F
q(z)=£§+~?~+(z_1)2+z_l+g(z)

p@) =24 Pt P

where P{z) and @(z) are polynomials. In order to make the singularity
at « regular, 2z 4 #*p{z) must have at most a simple pole at « and
z%¢(z) must have at most a double pole. In view of these conditions
P{z) and Q{z)} must be identically zero, and the relation D 4+ F = 0 must
hold. These are evidently the only conditions, and we can rewrite the
expressions for p(z) and g(z) in the form

A B
p(2)=?+z_1
C D E

@ = s ooyt e ST
The indicial equation at the origin reads
oo — 1) = da + C.

fo if its roots are denoted by «;, a; we obtain A = a1+ a2 — b
¢ = —ayay. Similarly, B = . + 8: — 1 and £ = — 43, where 5y, 82
are the roots of the indicial equation at 1. In order to write down the
indicial equation at « we note that the leading coefficients of —2z —
2p(z) and 2%(z) are —(2+ A+ B) and € — D 4+ E, respectively.
Hence the roots yy, ve satisfy vy + 2 = —A — B — 1 and

Y¥1¥e = —C+D—E,
We conclude at the relation

(21) ittt Btnty=1,
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and we find that the eguation can be written in the form

@2) w”+(1 ezl _6‘"‘32)w'
z z—1
aies s -+ Biffs — yiye 8182
+(22 #Hz — 1) +(z—1)2)w=0'

In order to avoid the exceptional cases we will now assume that none
of the differences as — oy, B2 — 1, ¥2 — v1is an integer. Our next step
is to simplify the equation (22). In Sec. 3.2 we have already shown
that the substitution w = z%g(z) determines for g(2) a similar differential
equation, namely, the equation (17). Since the original equation has
solutions of the formw = zg,(z), w = 294g.(2), we conelude that the trans-
formed equation (17) must have solutions of the form g{z) = za2g,(2)
and g(2) = 277 2g3(2). Hence the indicial equation of (17) has the roots
a, as can also be verified by computation. Simultaneously,
the roots which eorrespond to the singularity at = change from 1, ¥z to
Y1+ a, v2+a  In exactly the same way we can separate a factor
(z — 1) and find that the resulting equation has exponents which are
smaller by 2 at I and larger by § at «. The natural choice is to take
a=ay, §= 0. In the final equation the six exponents are then 0,
ay — oy 0, B2 — Bi, v1 -+ 01 + By, y2 + er -+ By, respectively, In order
to comply with time-honored conventions we will writea = a; + 1 + 71,
b=a1+ B+ vy¢=1+a — a. Because of the relation (21) we get
¢ —a—b=p — B Accordingly, the new differential equation will be
of the form

1 ¢ 1—c+a+b ’ ab
w +(Z+W)w tae—p© =0

o) — o, 6 —

or, after simplification,
(23) 21 — 2w’ + e — (o 4+ b+ Dzl — abw = 0.

This is called the hypergeometric differential equation, and we have proved
that the solutions of (22) are equal to the solutions of (23) multiplied by
z(z — 1)f. It is assumed that none of the exponent differences ¢ — 1,
a —b,a4b— cisan integer.

According to the theory, equation (23) has a solution of the form

w = Z Agzn, If this power series is substituted in (23), we find with
#=0

very little computation that the coefficients must satisfy the recursive

relations

(n+ 1{n 4+ c)An = (0 + a){n + b)A,.




308 COMPLEX ANALYSIS

The extremely simple form of this relation makes it possible to write
down the solution explicitly. With the choice Ao = 1 we find that the
hypergeomelrie equation is satisfied by the function

ala+ 1) bH+1)
I-2-clc+ 1
+a(a+1)(a+2)'b(b+l)(b+2)
1-2-3-¢(c+ D+ 2)

Flaped) =1+ 52z +

zﬂ+--.’

known as the hypergeometric function. 1t is defined as soon as ¢ is not
zero or a negative integer.

The radius of convergence of the hypergeometric series can easily be
found by computation, but it is more instructive to use pure reasoning.
In the first place, we know that F(a,b,c,z) can be continued analytically
along any path which does not pass through the point 1 and does not
return to the origin. Hence a single-valued branch of F(a,b,c,z) can be
defined in the unit disk |z| < 1 (because the disk is simply connected),
and it follows that the radius of convergence is at least equal to one. I
it is greater than one, F(a,b,c,2) will be an entire funetion. Near infinity
it must be a linear combination of the solutions z7%g1(z), z %y2(2) known
to exist in a neighborhood of «. But it is elear that a linear combination
can be single-valued only if @ or b is an integer.  If a is an integer b is not
by assumption, and F(a,b,c,2) is a multiple of zgi(z). By Liouville’s
theorem, if a were positive F(g,b,c,2) would vanish identically, which is
not the ease. The only case in which the radius of convergence is infinite
is thus when @ (or b) is a negative integer or zero, and then the hyper-
geometric series reduces trivially to a polynomial,

In a neighborhood of the origin there is also a solution of the form
27cg(z). Here g(z) satisfies a hypergeometric differential equation with
the six exponents ez — a1, 0,0, 82 — B, v1 4+ oz + By, 12 4 ar + 5 It
follows at once that we can set g(z) = F(1 +a —¢,1 +b —¢,2 —¢2).
We have proved that two linearly independent solutions near the origin
are Fa,b,c,z) and 2 F(l 4+ e —¢1 +b ~ 2 — ¢,2), respectively.

The solutions near 1 can be determined in exaetly the same manner.
It is easier, however, to replace zby 1 — z and interchange the o’s and §’s.
As a result we find that the functions F{gb,l +a + b —¢,1 — 2) and
(1 — 2)*=tF(c — bec —a,] —a—b+el —2) are linearly independ-
ent solutions in a neighborhood of 1. The solutions near = can be
found similarly.

We have demonstrated that the most general linear second-order
differential equation with three regular singularities can be solved explicitly
by means of the hypergeometric function, It is evidently also possible,
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although somewhat laborious, to determine the complete multiple-valued
structure of the solutions.

EXERCISES

1. Showthat (1 — 2)== = F(e,8,8,2) andlog1/(1 — 2) = 2F(1,1,2,2).
2 Exp.ress the derivative of F(g,b,c,z) as a hypergeometrie function.
3. Derive the integral representation

o b0 = 0 — e a

Fla,b,e,2) = OICET]

4: If wy and w, are linearly independent solutions of the differential
equation w" = pw’ 4 qw, prove that the quotient = w./w, satisfies

_'_:i 13” 1 T}” 2 1
e (?) 5 (;;T =~ —zpt+7.

4.5. Riemann’s Point of View, Riemann was a strong proponent of
the idea that an analytic function ean be defined by its singularities and
gene_ral properties just as well as or perhaps better than through an
explicit expression. A trivial example is the determination of a rational
function by the singular parts connected with its poles.

. We will show, with Riemann, that the solutions of a hypergeometric
differential equation can be characterized by properties of this nature.
We consider in the following a collection F of function elements (f,Q)
with certain characteristic features which we proceed to enumerate.

'1. The collection F is complete in the sense that it contains all analytic

continuations of any (f,2) e F. It is nof required that any two function
elements in ¥ be analytic continuations of each other, and hence F may
consist of several complete analytic functions.
. 2 The collection is linear. This means that (f,0) e F, () e F
implies (e1f1 + c2f2,Q) € F for all constant ¢i, ¢z. Moreover, any three
eiemfants (fu.99), (f2,9), (f39) € F with the same @ shall satisfy an identical
relation eify + cofs 4+ e:f: = 0in Q with constant coefficients, not all zero.
In other words, F shall be at most two dimensional.

3. The only finite singularities of the functions in F shall be at the
points 0 and 1; in addition, the point <« is also counted as a singularity.
More precisely, it is required that any (f,9) € F can be continued along
all ares in the finite plane which do not pass through the points 0 and 1.

4. As to the behavior at the singular points we assume that there are
f}lnctions in F which behave like prescribed powers z= and z= near 0,
like (z — 1)% and (z — 1)* near 1, and like z ™ and ™ near ., In
precise terms, there shall exist certain analytic functions gi(z) and g(2)
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defined in a neighborhood A of 0 and different from gzero at that point;
for a simply connected subregion @ of A which does not contain the origin
function elements (z%:01(2),2), (¢7g2(2),2) can be defined, and it is required
that they belong to F. The eorresponding assumptions for the points 1
and = can be formulated in analogous manner.

The reader will have recognized that the solutions of the differential
equation (22) have just these properties, provided that none of the differ-
ences oz — oy, B2 — 81, Y2 — 71 18 an integer. In addition, the relation
o + as + Br + B+ 71 + v2 = 1 is satisfled. We make both assump-
tions and prove, under these restrictions, that there exists one and only
one collection F with the properties 1 to 4. Aecordingly, F will be identi-
cal with the collection of local solutions of the differential equation (22).

Riemann denotes any function element in F by the symbol

0 1 o
FPioy B vy 2p
oz Bz v

Thus P does not stand for an individual function, but this is evidently of
little importance. Once the uniqueness is established such identities as

0 1 == 0 1 o
Pionw Bt 7,2 =2a(z_l)ﬁPla1_a Br—8 mtatbe
a3 Br ve w—a Bi—B mtat+B

0 1 @ 0 1 oo
P {0{1 31 Yy z} = P 1 1 Ty 1—2
oz Be vz z Oz Y2

follow immediately provided that some care is given to their proper
interpretation. The fact that such relationships, some of them quite
elaborate, can be so easily recognized is one of the motivations for
Riemann's point of view.

In order to prove the uniqueness, consider two linearly independent
function elements (f1,9), (fz,2) € F, defined in a simply connected region
Q whieh does not contain 0 or 1. There are such function elements in
any £, for the functions z=gi(z) and z%gs(z) are linearly independent in
their region of definition; they can be continued along an arc which ends
in © and determine linearly independent function elements. If (f,0} is
a third function element in F, the identities

o +efi Feafe = 0
o +ofl +ofs =0
Cf" + Cl,fi’ + Cgf” =0

or
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imply
f n f
f A L|=0
ffl fl” ;!

We write this equation in the form

"= p@f" + ¢(2)f
with
(24) p(z) _flfs;! _.f i” q(z) - -_f;f;' "‘fé ;r

T A= LR his = R

Here the denominator is not identically zero, for that would mean that
f1 and f; were linearly dependent.

‘We make now the observation that the expressions (24) remain invari-
ant if fr and f; are subjected to a nonsingular linear transformation, i.e.,
if they arec replaced by Cu_f1 + Cufs, Cﬁlf! + Cszfn with CiiCoe — CiaCay 7= 0.
This means that p(z) and ¢{z) will be the same for any choice of f; and fs;
hence they are well-determined single-valued funetions in the whole plane
minus the points 0 and 1.

In order to determine the hehavior of p(2) and ¢(2) near the origin,
we choose fi = 22g1(2), fi = 22g2(2). Simple calculations give

fifs — fofi = (0 — ozutey{C 4 - - )
fufs — ol = (o2 ~ e){oy F ag — Vzater¥(C + - - )
1 — f3fif = oqas(ag — ag)emntee3(C 4 - - 1)

where the parentheses stand for analytic functions with the conamon value
C = g:(0)g:{0) at the origin. We conclude that p(z) has a simple pole
with the residue oy + oz — 1 while the laurent development of ¢(z)
beging with the terrn —eone/2%.  Similar results hold for the points 1
and «. We infer that

[

_atae—=1 B+8—
p(2) = p +=—=

LR

where po{2) is free from poles at 0 and £, On the other hand, the develop-
ment of p(z} at « must begin with the term —(y, 4+ 4. + 1)/2.  Accord-
ing to its definition (24), p(z) is a logarithmic derivative. As such it hag,
in the finite plane, only simple poles with positive integers as residues.
In view of the relation (al + oy — 1) + (ﬂ; + ﬁg e 1) = - ("y; + Y2 + 1),
it follows that pe{z) can have no poles at all and must, in fact, vanish
identically.
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Sinee f1f; — faf1 is thus # 0 except at 0 and 1, we conclude that ¢(z) is
of the form

B8 A B
q(z)z-—az;;u-—‘(“;:l%;'i‘;'f‘;“_“i'i‘qo@)

where qo(2) 18 a polynomial. At o the development must begin with
—vire/2%..  We find that go(z) must be identically zero while

A= —B = —(mz ¥ B1Be — 1172},
Collecting the results we conclude that f satisfies the equation

,wu_I_(l“"al‘“‘ﬂz_I_l—ﬁl—ﬁz)w,

z z~1
ey e + Bifls — Yrve Yrye o
"’(“2"5“""“ e~ 1) +(z—1)=)w“0

which is just the equation (22).

This eompletes the unigueness proofs, for it follows now that any col-
leetion F which satisfies 1 to 4 must be a subcollection of the family F, of
local solutions of (22). For any simply connected € which does not con-
tain 0 or 1 we know that there are two linearly independent function
elements (f1,9), (f»,9)} in F. Every (f,)) € Fyisof the form (erfy + ¢2f5,%)
and is consequently contained in F. TFinally, if © is not simply con-
nected, then (f,Q) € Fy is the analytic continuation of a restriction to a
simply connected subregion of £, and since the restriction belongs to F
80 does (f,Q) because of the property 1.
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Abel limit theorem, 42
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Axis, Imaginary, 12
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Bernoulli, 203

Besgel, 304
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Borel, 60

Boundary, 53

Bounded, 56

Bounded variation, 105
Branch, 277

Branch point, 98, 287-291
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Canonical basis, 260
Canonical mapping, 243-253
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Canonical region, 243
Cantor, G., 64, 214
Carathéodory, C., 235
Cauchy, A., 25

Cauchy estimate, 122
Cauchy inequality, 10
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Cauchy integral theorem, 105-114,

137-147
Cauchy principal value, 157
Cauchy sequence, 34

Cauchy-Riemann equations, 25-26

Chain, 137-138
Change of parameter, 68
Circle of convergence, 39
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Closed, definition, 52
Closed eurve, 69
Closure, 53
Commutative law, 4
Compact, 50-64
Complement, 50
Complex function, 21-48
Complex integration, 101172
Component, 57
Conformal equivalence, 243
Conformal mapping, 13-76, 221-253
Congruence subgroup, 270
Conjugate differential, 162
Conjugate harmonte function, 256
Conjugate number, 6-8
Connected sets, 5469
Connectivity, 144-147
Continuation, analytie, 275-280
direct, 279
along arc, 278-281
Continuous function, 64-67
uniformly, 66
Contour, 108
Contraction, 35
Convergence, absolute, 36
circle of, 39
uniform, 37
Convergent sequence, 34
Cross ratio, 78-80
Curve, 68
Jordan, 69
level, 89
point, 69
unit, 284
Cycle, 138

Definite integral, 101
Deformation, 281

De Motvre, 15
Dense, 58
Derivative, 23, 24
Differentiable arc, 69

Differential equation, 267-269, 200-312

Dirichlet's problem, 240-243
Discrete, 59, 257
Piscriminant, 262
Distributive law, 4

Divergent sequence, 34
Doubly periodic function, 257

Element, 50

Ellipse, 96

Elliptic, definition, 86
Elliptic function, 232

Elliptic integral, 251

Elliptic modular function, 270
Empty set, 53

Entire function, 192, 205-210
Eguicontinuous, 210-211
Essential singularity, 129
Euler, L., 44, 197

Exaet differential, 107
Exponential function, 43—46
Exterior, 53

Fibonscei numbers, 182
Field, 4
Fixed point, 86
Fourier development, 256
Fraetion, partial, 31, 185-189
Fresnel integral, 205
Funetion, algebraic, 291297
analytic, 24-28, 69-76
complete, 276
global, 275
complex, 2148
conjugste harmonie, 25-26
continuous, 23, 64-67
entire, 192, 205-210
exponential, 4346
gamma, 196-205
Green’s, 243, 249-251
harmenie, 25, 160-172, 233-243
hypergeometric, 308
integral, 192
mverse, 65
regular, 127
single-valued, 22
Function element, 275
Functional, definition, 167
Functional relation, 277
Functions, subharmonic, 237-240
trigonometrie, 4346
Fundamental group, 284
Fundamental region, 98-99, 274
Fundamental sequence, 34
Fundsmental theorem of algebra, 28,
122

Uamma function, 196-205
Geometric series, 38

Germ, 277

Global analytic function, 275
Goursat, E., 111

Greatest Iower hound {g.1.b.), 55
Green’s function, 243, 249-251

Hadamard, JI., 206-210

Hadamard formuia, 39

Harmonic function, 25, 160-172, 232
243

Harmonic measure, 244-249

Harnack’s principle, 235-237

Heine-Borel, 60

Holomorphie, 21, 24

Homeomorphism, 65

Homologous, definition, 144

Homology basis, 146

Homomerphism, 46

Homothetie, definition, 77

Homotopic, 281287

Hurwitz, A., 176, 217

Hyperbola, 90, 85

Hyperbolie, definition, 86

Hypergeometric differential equation,
305-309

Hypergeometric function, 308

Identity, Lagrange’s, 9

Irage, 64, 73

Imaginary axis, 12

Imaginary part, 1

Index, 114-118

Indicial equation, 303

Indirectly eonformal, 75

Inf, 55

Infinite product, 189-192

Infinity, 18

Integral, complex, 101-104
definite, 101

Integral domain, 4

Integral function, 192

Integration, 101-172

Interior, 53

Intersection, 50

Interval, 55

Into, definition, 64

INBEX

Inverse function, 65

Inverse image, 65

Inversion, 77

Involutory transformation, 7
Isolated point, 53

Isolated singularity, 124
Isomorphism, 5§

Jacobian, 25, 75

Jengen’s formula, 205-206
Jordan arc, 69

Jordan curve, 69

Jordan curve theorem, 118

Kernel, 46
Koebe, P., 222

Lacunary value, 207
Lagrange's identity, 9
Laplace equation, 25, 160
Laurent series, 182-184
Least upper bourd (l.u.b.), 55
YLegendre polynomial, 182
YLegendre relation, 266
Length, 104

Level curve, 88

Limes inferior, 34

ILimes superior, 34

Limit, 22-24

Limit point, 62

Lindelsf, E., viii, 97, 199
Line integral, 101-109
Linear differential equation, 2909-312
Linear group, 76-78

Linear transformation, 76-89
Liouville’s theorem, 122
Loecal mapping, 130-133
Local solution, 209

Locally bounded, 216
Locally exact, 144
Logarithm, 46-48

Lucas theorem, 29

Majorant, 37
Mapping, conformal, 68-76, 227-233
eontinous, 6467
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Mapping, local, 130133

elit, 251-253

topologieal, 66
Mapping theorem, Riemann's, 221-227
Maximum, 56
Maximum principle, 133137, 164
Mean-value property, 163-165, 234-285
Measure, harmonie, 244-249
Meromorphic, definition, 128
Minimum, 56
Minorant, 37
Mittag-Leffer, G., 185
Modular function, 269-270
Modular group, 259
Module, 146, 257-258
Modulug, 7
Monodromy theorem, 285-287
Morera’s theorem, 122
Multiply eonnected regions, 144-147

Neighborhood, 52
Noneuclidean distance, 137
Noneuclidean length, 137
Normal derivative, 162
Normal family, 210-218

One to one, 656
Onto, definttion, 65
Open, 52
Order, algebraic, 128
of branch point, 98
of entire function, 207
of pole, 30, 127
of rational function, 31
of gero, 28, 127
Order relation, 5
Ordinary point, 300
Orientation, 83
Osgood, W. F., 222

g-function, 264-269
Parabola, 90
Paraholic, definition, 86
Parameter, 68
change of, 68
linear, 68

Partial fraction, 31, 185-18G
Period, 45-46, 255
Perron, 0., 240
x, 46
Picard theorem, 207-208
Piecewise, 69
Plane, complex, 12
extended, 18
Point, accumulation, 53
branch, 98, 287-201
fixed, 86
isolated, 53
limit, 62
ordinary, 300
Point curve, 69
Poisson’s formula, 165-167
Pole, 30, 127
Polygon, 56
Polynomial, 28-29
Power series, 33-42
Precompact, 213
Principal braneh, 71
Probability integral, 204
Purely imaginary, definifion, 1

Rational function, 30-33
Real number, 1
Real part, 1
Rectifiable arc, 104-105
Reflection principle, 170-172
Region, 57

closed, 57

determined by v, 116
Regular arc, 60
Regular function, 127
Regular singular point, 302-304
Relatively prime, 261
Removable singularity, 124-126
Residue, 147-160
Residue theorem, 147-151
Regultant, 201-292
Riemann, B., 25
Riemann mapping theorem, 221-227
Riemann sphere, 19
Riemann surface, 97-89, 277-278
Rotation, 78
Rouché's theorem, 152

Schlicht, 222
Schwarz, H. A., lemmma, 135
theorem proved by, 167-168
Schwarz-Christoffel formyla, 228-230
Schwarz triangle function, 233
Schwarzian derivative, 184
Bequence, convergent, 34
divergent, 34
fundamental, 34
Set, 50
Sheet, 97
Simply eonnected, 139-144
Singular part, 31, 185
Singular path, 280
Singular point, 280, 302
Singularity, algebraic, 200
ordinary, 200
essential, 129
isolated, 124
removable, 124-126
Slit mapping, 251-253
Solytion, 209
Space, complete, 59
Hausdorff, 67
metric, 51-54
separable, 58
topological, 67-68
totally bounded, 61
Sphere, 19
Square root, 2
Steiner, J., 85
Stereographic projection, 19
Straight line, 17
Subharmonic functions, 237-240
Subset, 50
Sup, 55

INDEX

Symmetry, 80-83
Symmetry principle, 82, 170

Tangent, 69

Taylor series, 177-182
Taylor's theorem, 125
Topological mapping, 65
Topological property, 65
Totally bounded, 61

Trace, 278

Trisngle funetion, 233
Triangle inequality, 9
Trigonometrie funetions, 4445

Uniform continuity, 66
Uniform convergence, 173-177
Uniformizing variable, 200
Unimodular, 258

Union, 50

Unit curve, 284

Univalent, 222

Value, sbeolute, 6
Variable, uniformizing, 290
Vector, 12

Weierstrass, K., 63, 129
g-function, 264-268
theorem, 173-176, 194

Winding number, 114-118

Zero, 29, 127
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