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Summary

Abstract

Our starting point is a well known model of free fermions in imaginary time,

where particles can hop to nearest neighbours on a one-dimensional lattice. The

system is considered in the domain wall geometry, that is assuming that the initial

and final states correspond both to the state where half the lattice is completely filled

and the other half is empty. The motivation to study this model lies first of all in its

connection with other important statistical models, such as a particular dimer model

and the XX quantum spin chain. Secondly, the model is interesting because, in its

simplicity, its density profile exhibits the limit shape phenomenon in the scaling

limit, consisting in a spatial separation of phases between a deterministic region,

where the density is either zero or one, and a fluctuating one, where the density is

between zero and one.

The purpose of this work is to study some generalizations of the model de-

scribed above, perturbing the Hamiltonian with a next-nearest-neighbour-hopping

term and/or modifying the initial and final conditions. These changes, beside lead-

ing to different shapes for what concerns the separation of phases, also give rise to

new features. In particular, the fact that we allow the fermions to jump over each

other brings some non-trivial minus-signs in the computation of the density. This,

combined with the non-unitarity of the evolution in imaginary time, results in the

possibility for the density to be ill-defined, i.e. taking values outside the range [0, 1].

In this work we focus on the problems exhibited by the density, characterizing the

regions where it is not well-defined.

Another motivation for studying limit shapes for this kind of model is the re-

lation, through the Wick rotation, to real-time quantum quench problems. Some

results in this direction were found first starting directly from imaginary time, then

performing an analytic continuation to real time. However, the analytic continua-

tion is not justified for every model and it is known that there are Hamiltonians that

do not map to a statistical model with positive Boltzmann weights. By presenting

models where the density is not between zero and one, we provide explicit examples

where the analytic continuation is not possible.

3



Chapters’ contents

Here is briefly how the chapters are organized:

Ch. 1: The first section is dedicated to the introduction of the limit shape phe-

nomenon; a few examples will be shown, without aiming at a complete de-

scription. In the following section the second general topic entering this work,

namely free fermions, is introduced; here only the notations are discussed,

while more technical details are left to Chapter 2. In the third section it will

be shown how our starting model is closely related to a statistical mechanics

model of dimers. Finally, the last section is devoted to introduce the main

model we will focus on.

Ch. 2: Some necessary theoretical tools are introduced, namely some free fermions

techniques, including Wick’s theorem, and the theory of semi-infinite Toeplitz

matrices.

Ch. 3: An exact integral formula for the two-point correlation function is obtained for

a fairly general model of free fermions in domain wall geometry. This is done by

the means of Wick’s theorem and semi-infinite Toeplitz matrices’ properties,

recovering a known result by an alternative derivation. The new derivation

will prove particularly suitable for generalization to other geometries.

Ch. 4: The formula derived in Chapter 3 is used to study the density profile in the

scaling limit for our model. This allows to characterize its limit shapes and

justify the existence of regions where the density is ill-defined.

Ch. 5: The exact formula of Chapter 3 is generalized to different geometries and it

is then applied to study the limit shapes for our model in a such geometries.

Considering alternative geometries will also allow to understand the problem

of the ill-definition of the density in more general terms.

Ch. 6: We draw some conclusions and mention some possible developments.
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Conventions

Formulas and Symbols

Anti-commutator: [A,B]+ = AB +BA

Momentum basis:

c†x =

∫ +π

−π

dk

2π
e−ikxd†(k)

cx =

∫ +π

−π

dk

2π
e+ikxd(k)

Imaginary-time evolution: A(τ) = eτHAe−τH

Lattice-sites positions: Z̃ = Z + 1
2

Position basis: c†i1 ...c
†
in
|0...0〉 , i1 < i2 < ... < in

Identity matrix l × l : Il

Acronyms

NN: nearest-neighbour

NNN: next-nearest-neighbour
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Chapter 1

Introduction

1.1 Limit shape phenomenon and dimer models

We start by introducing one of the main topics of this work: the limit shape

phenomenon. This phenomenon is observed in some lattice models, in the so-called

scaling limit, where the number of sites of the lattice is sent to infinity and the lattice

parameter to zero, in such a way that the size of the system stays constant. In such

limit, under particular boundary conditions, these models may exhibit spatial phase

separation, with the emergence of ordered and disordered regions, sharply separated

by smooth curves, known as arctic curves. Correspondingly, the order parameter

of the model acquires spatial dependence, with a non-trivial profile. We call limit

shape the (integrated) profile of the order parameter for some given system.

The archetypical examples of models exhibiting the limit shape phenomenon are

dimer models [1]. They may be defined on generic graphs but, for simplicity, we

will restrict to lattice graphs. Moreover, we consider only bipartite lattices, that is

we assume that one can label lattice sites with two colours, say black and white,

in such a way that each lattice point has all its nearest neighbours of the opposite

colour (e.g., the square and the hexagonal lattice are bipartite, while the triangular

lattice is not). On this kind of lattice we introduce the dimers, which are objects

that cover two neighbouring lattice sites each; equivalently, we can also see a dimer

as covering a lattice link, meaning that it occupies the two sites connected by that

lattice link. Finally, we consider the ensemble of dimers configuration, where an

allowed configuration of dimers is such that each lattice site is occupied by one and

only one dimer.

Dimers can be divided in classes, according to their orientation and the colours

of the underlying lattice that they cover; see Fig. (1.1) for the case of the square

lattice. To define ensemble averages, a probability distribution (taken uniform in

the simplest cases) is specified. At this point, natural questions are for instance the

distributions of the various classes of dimers. Examples of dimer coverings of an

7



CHAPTER 1. INTRODUCTION

Figure 1.1: All four classes of dimers for a two-dimensional square lattice are listed. The under-

lying square lattice is coloured with black and white to highlight that it is bipartite.

The colour code for the dimers is: vertical dimers in blue (red) if their bottom part

touches a black (white) lattice site; horizontal dimers in green (yellow) if their left

part that touches a black (white) lattice site.

Figure 1.2: Dimer coverings of an L × L grid, chosen uniformly at random. From left to right,

L = 3, 15, 75. The colour code is the same as in Fig. 1.1, while dimers have been made

thicker to make the pictures look nicer. The pictures are generated using a Monte

Carlo algorithm: start from any simple configuration; pick a plaquette (i.e. a square

of 4 neighbouring sites) uniformly at random, if it has two horizontal (vertical) dimers,

flip them to get vertical (horizontal) dimers, otherwise do nothing; repeat many times.

L× L grid are presented in Fig. 1.2.

The seminal example of dimer models exhibiting the limit shape phenomenon is

the dimer covering of the square lattice in the Aztec Diamond shape [2], that is the

portion of the two-dimensional square lattice defined by the sites

AL ≡ {(i, j) | i, j ∈ Z̃, |x|+ |y| ≤ L}, (1.1)

where Z̃ ≡ Z + 1
2
. The Aztec Diamond shape is represented in Fig. 1.3.

The dimer covering of the Aztec Diamond undergoes the limit shape phenomenon

when the number of lattice sites goes to infinity while the distance between lattice

site decreases so that the overall size of the system stays the same. In particular,

there is a spatial separation between four deterministic regions, where one can claim

with certainty which type of dimer covers the lattice, and a fluctuating one, where at

least two different types of dimers have an associated non-zero occupation probabil-

ity (see Fig. 1.4). The two types of regions are usually called frozen (or crystalline)

and liquid respectively.

For the Aztec Diamond, the limit shape phenomenon takes the form of a theorem,

called Arctic Circle Theorem [3]): ∀ε > 0, ∃L ∈ N such that almost all (i.e. with

8



1.1. LIMIT SHAPE PHENOMENON AND DIMER MODELS

Figure 1.3: Aztec Diamond AL for L = 2, 3, 4. The lattice sites are coloured in black and white

to highlight that the lattice is bipartite.

Figure 1.4: Dimer coverings of an Aztec diamond of order L, chosen uniformly at random. The

colour code and the Monte Carlo algorithm are the same as in Fig. 1.2. From left to

right, L = 3, 15, 600. As L increases, dimers appear totally frozen outside a region,

whose boundary can be proved to tend uniformly to a circle.

probability P > 1 − ε) randomly picked dimer coverings of AL have a disordered

bulk region whose boundary stays within distance εL from the circle of radius L/
√

2.

Further investigations of the dimer covering of the Aztec Diamond, such as the

description of the interface’s fluctuations, can be fund e.g. in [4–6].

To understand the cause of phase separation, imagine to start covering the Aztec

Diamond from the bottom corner and to place a vertical dimer. Then, there is just

one choice of dimers for a whole side of the Diamond that do not leave any site

unoccupied. On the other hand, starting with an horizontal dimer does not constrain

any other dimer. Hence, we conclude that there are many more configurations for

which the bottom corner is occupied by an horizontal dimer than configurations

where the bottom corner is occupied by a vertical dimer. The argument can be

iterated, explaining the observation of ordered dimers on the corners.

The Aztec Diamond is an example where the limit shapes phenomenon emerges

from two competing instances: on one hand, the parameters of the system are

tuned in such a way that at equilibrium the disordered phase should prevail (as

observed in the square domain Fig. 1.2); on the other hand, boundary conditions

are chosen so that ordered configurations are strongly encouraged in the proximity

of the boundary. This induces ordered regions extending macroscopically from the

9



CHAPTER 1. INTRODUCTION

boundaries deeply inside the bulk of the system. These regions are sharply separated

from a central disordered region by the arctic curve.

To conclude this short introduction to limit shapes, let us mention that the

phenomenon appears in various topics of Mathematics and Physics, such as, in one

dimension, Young diagrams with the Plancherel measure [7] and discrete random

matrix models [8]. Other examples are the evaporation of a cubic crystal [9–11],

boxed plane partitions [12] and Schur processes [13]. These last examples may all

be viewed as dimer models on planar bipartite graphs, for which a general theory has

been constructed [14–16]. An interesting connection between limit shape phenomena

in such models and the out-of-equilibrium evolution of one-dimensional quantum

free-fermion models has been discussed in [17]. Beyond free-fermionic models, limit

shapes appear also in Alternating Sign Matrices [18, 19] and in various exactly

solvable models of statistical mechanics [20], such as the six-vertex model [21, 22],

the stochastic six-vertex model [23] and the twenty-vertex model [24]. Two examples

are shown by Fig. 1.5 and Fig. 1.6. In our case, we will focus on the density profile of

a fermionic model evolving in imaginary time. In particular, we will observe sharply-

separated regions where the density behaves differently. In this case, the term limit

shapes refers to such non-trivial density profiles. Note however that limit shapes

are not, strictly speaking, defined for the density, but for another field, called height

function [16]; they are however closely connected, the density being essentially the

derivative of the height function.

1.2 Free fermions

Alongside the limit shape phenomenon, a main role in our work will be played

by free fermions. We focus on fermion models defined on a one-dimensional lattice.

For the sake of simplicity, we will first consider the lattice to be finite, with L being

the total number of sites.

Recall that a set of (Dirac) fermionic operators is a set of linear operators acting

on the anti-symmetric Fock space and satisfying the canonical anti-commutation

relations:

[ci, c
†
j]+ = δijI, [ci, cj]+ = 0, ∀i, j ∈ {1, ..., L}. (1.2)

The ci’s are called annihilation operators and the c†i ’s are called creation operators.

These operators can be constructed explicitly. Here we present a construction

due to Jordan and Wigner [29]. For L = 1, we introduce the C2 basis

{|0〉 , |1〉} ≡
{(

0

1

)
,

(
1

0

)}
, (1.3)

such that any state can be written as

|ψ〉 = α |0〉+ β |1〉 , α, β ∈ C. (1.4)

10



1.2. FREE FERMIONS

Figure 1.5: Young diagrams of orders n = 100 and n = 1000 sampled randomly from Plancherel

measure. As explained in [25], from which the figure is taken, there exists a correspon-

dence between the Plancherel-random Young diagrams of size n and the uniformly-

random permutation of order n. It can be proved that, for n → ∞, the typical con-

figuration of Young diagrams undergoes the limit shape phenomenon [7]. This can

be linked to the famous problem in integrable probability of the longest increasing

subsequence in uniformly-random permutation [26, 27].

Figure 1.6: Figure taken from [28]. Density profile for N particles on a one-dimensional lattice

{−1 + 2j
L−1 |j = 0, 1, ..., L− 1}. The particles interact via the 2d Coulomb interaction

(logarithmic repulsion). Since we impose that two particles cannot simultaneously

occupy the same site, density cannot exceed 1; on the other hand, particles tend to

accumulate towards the edges of the box because of the repulsive long-range interac-

tion. The density profile is discussed in [8] and exhibits the limit shape phenomenon.

In the figure, L = 64.

11



CHAPTER 1. INTRODUCTION

The state |0〉 can be interpreted as describing the absence of particles and |1〉 as

describing the presence of a particle. On this space we introduce the operators

c =

(
0 0

1 0

)
and c† =

(
0 1

0 0

)
. (1.5)

It easy to check that this two operators satisfy (1.2) for L = 1 (though it does

not have much sense to talk about fermions with just one particle). Notice that

c† |0〉 = |1〉 and c |1〉 = |0〉, from which the name of the operators.

If we consider now the tensor product of L copies of the space we have just

introduced, a basis is given by all the states

|σ1σ2...σL〉 ≡ |σ1〉 ⊗ |σ2〉 ⊗ ...⊗ |σL〉 , (1.6)

where σi ∈ {0, 1}; we call this position basis and its elements position states. Given

a position state, we interpret its 0’s as describing empty lattice sites and its 1’s as de-

scribing occupied lattice sites. For instance, |0110〉 is the state of a one-dimensional

lattice of length L = 4 where the second and third sites are occupied and the others

are empty.

On this space, we define the operators

c†1 ≡ c† ⊗ I2 ⊗ ...⊗ I2︸ ︷︷ ︸
L−1 times

...

c†k ≡
(
−1 0

0 1

)
⊗ ...⊗

(
−1 0

0 1

)
︸ ︷︷ ︸

k−1 times

⊗ c† ⊗ I2 ⊗ ...⊗ I2︸ ︷︷ ︸
L−k times

...

c†L ≡
(
−1 0

0 1

)
⊗ ...⊗

(
−1 0

0 1

)
︸ ︷︷ ︸

L−1 times

⊗ c†,

(1.7)

where the chain of k − 1 tensor products of (−1)c
†c is called Jordan-Wigner string.

By applying the tensor product property (A ⊗ B)(C ⊗ D) = AC ⊗ BD, it can be

proved that the set containing the operators c†j and their adjoints is a set of fermionic

operators.

Notice that, defining the vacuum state |0〉 ≡ |0〉 ⊗ ...⊗ |0〉︸ ︷︷ ︸
L times

, the position basis can

be built by applying all the possible products of the creation operators. However,

since the action on |0〉 of permutations of the same set of creation operators gives

the same state (modulo a sign), we need to decide the order in which the creation

operators should be applied, to avoid having a redundancy of generators. The rule

12



1.3. FROM DIMERS TO IMAGINARY-TIME FERMIONS

we choose is that the creation operators act from the one with the largest index to

the one with the smallest; for example |1101〉 = c†1c
†
2c
†
4 |0〉. Thus, a generic position

state reads |σ1σ2...σL〉 = c†i1 ...c
†
in
|0〉, where σi ∈ {0, 1}, n ≤ L, i1 < i2 < ... < in and

the indices ik are those for which σik = 1.

To conclude this introduction to free fermions, we define a free model (or quadratic

model) a model whose Hamiltonian may be written as quadratic polynomial in the

set of fermionic operators. Higher-than-quadratic terms are called interactions and

the corresponding models are called interacting. As we will see in Section 2.1, the

property of a theory to be free facilitates its analytic treatment.

For a more detailed introduction to many-particle models, see for instance [30].

1.3 From dimers to imaginary-time fermions

The model we will focus on is a model of fermions in imaginary time. Being the

time imaginary, one should link it to a real time physical model or to a statistical

mechanics model, to make sense of the quantities that are considered. The connec-

tion is usually done via the so called quantum-statistical mechanics correspondence,

according to which a (d + 1)-dimensional classical system at the equilibrium can

be described as d-dimensional quantum system evolving in imaginary time, see e.g.

[31]. Here, following [28], we will show how a dimer model is mapped to fermions

and then, thanks to the transfer matrix method, we will show how the various equi-

librium quantities of the dimer model can be derived as quantities of the fermion

model considered at different imaginary times. Historically, the first solution of the

a dimer model is due to [32] and [33], while the first mapping of dimers onto free

fermions is due to [34], though the version that is presented here is more in the spirit

of [17, 35, 36].

Let us start by considering a portion of the brick wall lattice as the one repre-

sented in Fig. 1.7a. Note that this can be viewed as a deformation of the regular

hexagonal lattice, but the brick wall shape is more convenient for our purpose. We

consider the portion of the lattice to have an odd number of horizontal rows of

bricks, with every row containing the same odd number of bricks, and a periodicity

every two rows in the vertical direction.

As concerns the boundary conditions of the system, we are interested in the

domain wall geometry, which in the present case consists in removing all the lattice

sites on the left half of the top and bottom lattice rows and one every two sites in

the right half of such rows (cf. Fig 1.7a).

In the end, excluding the top and bottom (incomplete) rows, the lattice portion

has size (2R− 1)× (2l− 1), where 2R− 1 is the number of internal brick rows and

2l − 1 is the number of bricks in each row. To fix a coordinate system, we set the

origin in the center of the obtained portion.

13



CHAPTER 1. INTRODUCTION

We consider now the dimer coverings of this lattice portion, as defined in Sec-

tion 1.1. Notice that, in the geometry under consideration, the right half of top and

bottom lattice sites can be covered by vertical dimers only, and many sites on the

right are consequently constrained to be occupied by vertical dimers. So, as hap-

pened with the Aztec Diamond, the particular geometry under consideration has

strong influence on macroscopically large regions near the boundaries.

Differently to what was done with the Aztec Diamond, rather than specifying

a uniform distribution on the ensemble of dimer configurations, here we introduce

some weights in the model. In particular, we associate a real number u ∈ (0, 1)

to one every two horizontal lattice links, as represented in Fig.1.7a. The weight of

each dimer covering, modulo a normalization factor, is given by u to the number of

weighted lattice links occupied by a dimer.

In this construction, we take first the limit l → +∞. Then we rescale every

distance by R and only at this point we take the limit R → +∞. Finally, we end

up with a model that has infinite size on the horizontal direction and goes from -1

to +1 in the vertical direction; note that in this limit the model is continuous in

both directions. This is what we refer to as scaling limit. The model we have just

introduced exhibits the limit shape phenomenon in the scaling limit. An illustration

of the limit shape that one gets is represented in Fig. 1.7c, where we consider a large-

size brick wall lattice before rescaling by R; the analytic discussion of the problem

can be found in [17].

One way to approach this problem is via a mapping to fermions. The peculiarity

of this model that makes its mapping to fermions particularly easy is the fact that

each of its dimers configuration can be exactly identified just specifying where the

vertical dimers are: once the vertical dimers are placed, there is only a way to

complete the dimer covering with the other types of dimers. Moreover, the number

of vertical dimers is conserved in each of the brick rows. This naturally leads to

the mapping to particles: we associate a certain configuration of particles on a one-

dimensional lattice to each row of vertical lattice links. In particular, each vertical

lattice link will correspond to a lattice site, taken to be occupied by a particle if

and only if it is free of dimers. To extend the mapping to the top and the bottom

rows, let us imagine that the removed lattice links are still there, but with no dimer

on them. We have then that the top and bottom boundaries of the dimer model

correspond both to a configuration of particles in which the left half of the lattice

is completely occupied by particles and the right half is completely empty. Notice

that the number of particles is conserved in each row, as the number of vertical

dimers was, and that each lattice-link row corresponds to a configuration of a lattice

of length 2l. An illustration of the mapping to fermions is done in Fig.1.7b.

For what concerns the particle statistics, we take them to be fermions, just

because we want each lattice site to be occupied by either one or zero particles. In

14



1.3. FROM DIMERS TO IMAGINARY-TIME FERMIONS
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(a)

|111000〉

|101100〉

|101100〉

|011100〉

|111000〉

(b)

(c)

Figure 1.7: Brick-wall lattice. There are three classes of dimers in this lattice: one vertical dimer

(blue in the figure) and two horizontal ones, the first type (green in the figure) occu-

pying weighted lattice links and the other (yellow in the figure) occupying unweighted

lattice links. (a) Representation of the weighted brick wall in the domain wall geom-

etry; using conventions defined in the text, the lattice has size (2R − 1) × (2l − 1),

with l = 3, R = 2. (b) Example of dimer covering for the brick wall in domain wall

geometry. Some dimers on the right half of the lattice are forced to be vertical by the

boundary conditions. The mapping onto fermion configurations is also shown. (c)

Typical configuration for a lattice with R = 600 and weight u = 1/2, obtained via a

Monte Carlo evolution similar to the one used for the Aztec Diamond.
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CHAPTER 1. INTRODUCTION

this mapping, particles exchanges will not be involved, so that the anti-commuting

nature of fermions is actually not important at this level, if not to impose a hard

core constraint on particles.

Suppose now that there exists a 2l × 2l matrix T , called transfer matrix, such

that, given two configurations of fermions |C〉 and |C ′〉, 〈C|T |C ′〉 = un if the con-

figurations are compatible – meaning they form a valid dimer configuration when

stitched together and mapped back onto dimers – and zero otherwise; here n is the

number of horizontal dimers occupying weighted lattice links in the configuration.

If such a matrix exists, in principle all the interesting quantities of the model can

be computed from it. For instance, assuming the states are normalized, we can

compute the partition function of the original dimer model as

Z = 〈top|T 2R|bottom〉 , (1.8)

where |top〉 and |bottom〉 are the states corresponding to the the top and bottom

configurations respectively and 2R+1 is the total number of fermionic configurations.

This is because

〈top|T 2R|bottom〉 =
∑

C1,...,C2R−1

〈top|T |C2R−1〉 ... 〈C1|T |bottom〉 (1.9)

and 〈Cj|T |Cj−1〉 gives the weight of the j-th row if the configurations are compatible

and zero otherwise, so this just counts the number of dimer coverings compatible

with the top and bottom boundary condition, associating to each dimer configura-

tion the proper weight. Similarly, the expectation value of two local observables can

be written as

〈top|OxyOx′y′ |bottom〉 =
〈top|TR−yO†xT y−y

′
Ox′T

R+y|bottom〉
〈top|T 2R|bottom〉

. (1.10)

There are actually some subtleties involved here. For instance, the periodicity of

the lattice, being every two rows and not every row, implies that one has actually

to consider two different transfer matrices, and the expressions we gave are slightly

more complicated; for an accurate derivation see [17]. Anyway, it turns out that

these formulas are correct if we consider y and R to be very large (that is the limit

we are interested in).

In the limit l→ +∞, the transfer matrix can be shown to be

T = exp

(
−
∫ +π

−π

dk

2π
ω(k)d†(k)d(k)

)
, (1.11)
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with ω(k) = −1
2

ln(1 + u2 + 2u cos k) and

c†x =

∫ +π

−π

dk

2π
e−ikxd†(k),

cx =

∫ +π

−π

dk

2π
eikxd(k).

(1.12)

The overall minus sign in the definition of ω(k) is chosen to make a connection with

band theory and have the minimum of ω(k) in k = 0. We presented the transfer

matrix already in its diagonalized form; the diagonalization is standard and can be

found, for instance, in [37] and [38].

At this point we have a mapping from the brick wall lattice to a one-dimensional

model of fermions evolving in discrete imaginary time. As a last step, we take

the Hamiltonian limit. This limit is done before the scaling limit and consists in

substituting first R → pR, y → py, u → 1/p and then taking the limit p → +∞.

Since the original y was an integer, the new y takes discrete values separated by

steps of 1/p. It is clear, then, that in the Hamiltonian limit y takes continuous

values from −R to +R. An illustration of the Hamiltonian limit is given in Fig.1.8.

In this limit, the expression for the expectation value becomes

〈top|Ox(y)Ox′(y
′)|bottom〉 =

〈top|e−(R−y)H0O†xe
−(y−y′)H0Ox′e

−(R+y)H0 |bottom〉
〈top|e−2RH0 |bottom〉

,

(1.13)

with

H0 ≡
∫ +π

−π

dk

2π
ε(k)d†(k)d(k) ≡

∫ +π

−π

dk

2π
(− cos k)d†(k)d(k). (1.14)

Using the notation O(τ) = eτHOe−τH , the expectation value that we wrote can

be interpreted as the expectation value of two local operators associated to a one

dimensional lattice and evolving in continuous imaginary time. However, it should

be pointed out that the R at the exponent breaks the perfect parallelism with the

evolution in real time, since it is not present in the definition of the two-point

function in the real time problem.

Summarizing, we have mapped the problem of the dimer covering of the brick

wall lattice in the Hamiltonian limit onto a system of fermions on a one dimensional

lattice evolving in continuous imaginary time, whose expectation values are defined

as in (1.13). The limit shapes of the dimer model can now be studied by looking at

quantities of the fermion model such as the particle density.

As a final remark, we recognize in (1.14) the same Hamiltonian describing the XX

quantum spin chain, modulo a Jordan-Wigner transformation; the Jordan-Wigner

transformation for the XX-chain is treated for instance in [39], while more general
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Figure 1.8: Illustration of the Hamiltonian limit for dimers on the brick-wall lattice. From top to

bottom, p = 2, 4, 8. The horizontal axis reports the position x inside the lattice, while

the vertical axis reports the (still discrete) imaginary time y, after the rescaling by a

factor p has been done. In this limit the vertical direction becomes continuous and

the arctic curve converges to a circle centred in the origin. The scale on the horizontal

axis is the same in the three pictures, but it is shifted in order to center the limit

shape. The colour code is the same of Fig. 1.7.
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applications of transformation can be found in [40]; the general theory of spin and

fermion chains can be found for instance in [41].

1.4 Our model

1.4.1 Definition

In the previous section we saw how a statistical mechanics model can be solved

looking at a particular model of fermions in imaginary time, with a certain definition

of the two-point function. Thanks to that mapping, quantities such as the density

of the fermion model assume a probabilistic meaning. In our work, we start directly

from a more general fermion model and investigate the limit shape phenomenon in

this case. As we will see, the impossibility of doing the reverse procedure and obtain

a statistical model from our general model of fermions will lead to an ill-definition

of the density.

We work with a model of free fermions on lattice, assuming the lattice to be

along the x-axis in such a way that the sites occupy the positions Z̃ ≡ Z + 1
2
. We

then consider the evolution of the system in imaginary time, taking the time axis

to be the y-axis, and imposing that the evolution is ruled by a certain Hamiltonian

H; what we mean by evolution here will be clear when we will define the two-

point correlation function. Notice that we are working in an intermediate situation

between continuous and discrete, since the values on the x-axis are discrete and the

values on the y-axis are continuous.

We initially consider the problem in the domain wall geometry, that is we impose

the initial (imaginary time y = −R) and final state (imaginary time y = +R) to refer

both to the configuration in which all the negative lattice sites are occupied and all

the positive ones are empty (see Fig.1.9). We will identify the state corresponding

to such configuration as |ψ1〉 (where the 1 is present for future generalization). In

the language of fermionic operators, it is the state such that

ρx |ψ1〉 = c†xcx |ψ1〉 = Θ(−x) |ψ1〉 , ∀x ∈ Z̃, (1.15)

where Θ is the Heaviside step function.

We finally define the fundamental object of our work, i.e. the two-point correla-

tion function, as

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R ≡

〈ψ1|e−HRc†x(y)cx′(y
′)e−HR|ψ1〉

〈ψ1|e−2HR|ψ1〉

≡〈ψ1|e−H(R−y)c†xe
−H(y−y′)cx′e

−H(R+y′)|ψ1〉
〈ψ1|e−2HR|ψ1〉

,

(1.16)

The interest in this quantity is motivated by the mapping from the statistical prob-

lem we saw above and because it is one of the quantities of interest in quantum

19



CHAPTER 1. INTRODUCTION

0

+R

−R

y (imaginary time)

x (lattice position)

〈ψ1|

|ψ1〉

−11
2
−9

2
−7

2
−5

2
−3

2
−1

2
+11

2
+9

2
+7

2
+5

2
+3

2
+1

2

Figure 1.9: Representation of our model of fermions. The model is a chain of fermions hopping

on the lattice Z̃ in the domain wall geometry, in which the initial and final states are

completely filled on the left, and completely empty on the right.

quenches literature, see e.g. [42–45]. Notice also that, if we formally take R = 0

and y = it, we get the usual definition of the two-point function in real time; this is

actually the starting point for some techniques studying inhomogeneous real-time

evolution.

For the evolution, we consider an Hamiltonian with nearest-neighbour and next-

nearest-neighbour hoppings terms only (NN hopping and NNN hopping respec-

tively):

Hα =− 1

2

∑
x∈Z̃

(
(c†x+1cx + c†xcx+1) + α(c†x+2cx + c†xcx+2)

)

=

∫ +π

−π

dk

2π
ε(k)d†(k)d(k),

(1.17)

where ε(k) ≡ − cos(k)− α cos(2k) is referred to as the dispersion relation and d(k)

and d†(k) are defined as above (see (1.12)).

In fact, even though this is the Hamiltonian we have in mind, some of our results

extend to a much more general family of quadratic Hamiltonians.

1.4.2 Symmetries of the density profile

We will be interested mainly in the density profile of the model, obtained by the

two-point correlation function (1.16) setting x = x′ and y = y′. The best way to

familiarize with it is to look at its symmetries. Beside being useful in the following,

they can already provide intuition about what we are facing.
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Time reflection

Any combination of creation and destruction operators acting on a linear com-

bination of position states with real coefficients gives in general another linear com-

bination of position states, whose coefficients are still real. This means that the two

point function is a real scalar number, from which we have

〈ψ1|e−(R−y)Hαc†xcxe−(R+y)Hα|ψ1〉
†

= 〈ψ1|e−(R+y)Hαc†xcxe
−(R−y)Hα|ψ1〉 .

This immediately implies

ρx(y) = ρx(−y), (1.18)

i.e. that the density profile is symmetric by time reflection.

Particle-hole symmetry

Let us consider the expectation value of the hole density ρhx ≡ 1− c†xcx:

〈ψ1|ρhx(y)|ψ1〉R =
〈0|c− 1

2
...c−l+ 1

2
e(y−R)Hα(1− c†xcx)e−(y+R)Hαc†−l+ 1

2

...c†− 1
2

|0〉

〈0|c− 1
2
...c−l+ 1

2
e−2RHαc†−l+ 1

2

...c†− 1
2

|0〉
. (1.19)

First of all, notice that, if we reflect the boundary states with respect to the

y axis, ρ−x equals ρx in in original conditions: it just corresponds to inverting the

direction of the x-axis and a change in the coordinates system cannot alter the

predictions. Hence we can write

〈ψ1|ρhx(y)|ψ1〉R =
〈0|c 1

2
...cl− 1

2
e(y−R)Hα(1− c†−xc−x)e−(y+R)Hαc†

l− 1
2

...c†1
2

|0〉

〈0|c 1
2
...cl− 1

2
e−2RHαc†

l− 1
2

...c†1
2

|0〉
. (1.20)

Now let us change point of view and introduce the fermionic hole operators :

c†x = hx, cx = h†x, |0〉 =

∏
x∈Z̃

h†x

 |0h〉 . (1.21)

The expectation value pf ρh now reads

〈ψ1|ρhx(y)|ψ1〉R =
〈0h|h− 1

2
...h−l+ 1

2
e(y−R)Hαh†−xh−xe

−(y+R)Hαh†−l+ 1
2

...h†− 1
2

|0h〉

〈0h|h− 1
2
...h−l+ 1

2
e−2RHαh†−l+ 1

2

...h†− 1
2

|0h〉
. (1.22)

As for the Hamiltonian, when it is written in function of the fermionic hole

operators, it maintains its form, changing just the overall sign:

Hα = +
1

2

∑
x∈Z̃

(
(h†x+1hx + h†xhx+1) + α(h†x+2hx + h†xhx+2)

)
(1.23)

21



CHAPTER 1. INTRODUCTION

As the original Hamiltonian of the model, this new Hamiltonian can also be

diagonalized going to the momentum basis. This time, though, we choose a different

convention to define momentum basis, and we take

h†x =

∫ +2π

0

dk

2π
e−ikxf †(k) =

∫ +π

−π

dk

2π
e−i(k+π)xf †(k + φ), (1.24)

hx =

∫ +2π

0

dk

2π
eikxf (k) =

∫ +π

−π

dk

2π
ei(k+π)x(k + φ). (1.25)

With these conventions we have

1

2

∑
x

(h†xhx+a + h†x+ahx) =

∫ +π

−π

dq

2π
cos(a(q + π))f †(q + π)f(q + π) (1.26)

⇒ Hα =

∫ +π

−π

dq

2π
(− cos(q) + α cos(2q))f †(q + π)f(q + π). (1.27)

As the last change of notation we take g(q) = f(q + π) and, using

h†xhx =

∫ +π

−π

dqdp

(2π)2
eix(p−q)f †(q + π)f(p+ π) =

∫ +π

−π

dqdp

(2π)2
eix(p−q)g†(q)g(p), (1.28)

we find

〈ψ1|ρhx(y)|ψ1〉R =

〈0h|h− 1
2
...h−l+ 1

2
e(y−R)Hα

(∫ +π

−π
dqdp
(2π)2

e−ix(p−q)g†(q)g(p)
)

e−(y+R)Hαh†−l+ 1
2

...h†− 1
2

|0h〉

〈0h|h− 1
2
...h−l+ 1

2
e−2RHαh†−l+ 1

2

...h†− 1
2

|0h〉
,

with

Hα =

∫ +π

−π

dq

2π
(− cos(q) + α cos(2q))g†(q)g(q). (1.29)

So far we did not make any transformation: we just rewrote the expectation

value of the hole density in a new notation. Now notice that, taking x → −x
and α → −α, we find that the expression of 〈ψ1|ρhx(y)|ψ1〉R is formally identical to

〈ψ1|ρx(y)|ψ1〉R, so we can conclude that the system is symmetrical if we invert the

roles of particles and holes, modulo reflecting the system with respect to the vertical

axis and exchanging the sign of the NNN hopping term.

Conservation of the number of particles

This conservation law simply follows from the fact that the number operator

N =
∑

i∈Z̃ c
†
ici commutes with the Hamiltonian:

[c†jcj+a, N ] =
∑
i

(
[cj, c

†
ici]cj+a + c†j[cj+a, c

†
ici]
)

=
∑
i

(
−δijc†jcj+a + δi,j+1c

†
jcj+1

)
= 0,
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Figure 1.10: Density profile for the the fermion chain with NN hopping in domain wall geom-

etry. The model exhibits the limit shape phenomenon; in this particular case the

arctic curve is a circle. The procedure this profile was obtained will be explained in

Section 3.4.

where we used

[A,BC] = [A,B]+C −B[A,C]+. (1.30)

This means that any application of the Hamiltonian cannot change the total

number of particles, hence the total number of particles is constant in time.

1.4.3 Pure nearest-neighbour hopping limit

The case α = 0 gives back the Hamiltonian (1.14) and, because of its connections

to statistical models, deserves to be analysed on its own. This case has been already

studied and many results about it are known [17]. For instance, the model is known

to exhibit the limit shape phenomenon, the arctic curve being a circle. The density

profile in the scaling limit has a frozen deterministic region, where the density is

either zero or one and a fluctuating region, where the density is between zero and

one. We will provide a detailed proof of the arctic curve in Section 4.2, after the

necessary theoretical tools will have been introduced, but in Fig.1.10 we anticipate

the density profile, to give an idea of what we are dealing with.

Here we are only interested in the density profile, but let us mention that the

study of this model proceeded further. For instance, in [17] it is proven that large-

scale correlations inside the critical region are expressed in terms of correlators in

a (euclidean) two-dimensional massless Dirac field theory, which is observed to be

inhomogeneous, that is to have a position-dependent metric (so it is in fact a Dirac

theory in curved space).
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Figure 1.11: Density profile for our fermion model with α = 1/4. The red-shaded regions represent

the regions where the density is not well-defined. The procedure this profile was

obtained will be explained in Section 3.4.

1.4.4 The density problem

Our model with Hα, for general values of α, lacks one of the greatest features of

the α = 0 case: it is not linked to any statistical mechanic model. This prevents us

to interpret a priori the density that is inferred from the two-point function (1.16)

as some kind of probability distribution or even a density in the usual meaning.

Indeed, what we usually call density is a quantity defined between zero and one,

which is a property that is not guaranteed for our density; when our density is

between zero and one, we say that it is well-defined (ill-defined otherwise). As it

turns out already from numerical simulations, the density of our model is ill-defined

in some regions (see Fig.1.11). We are interested in studying how the ill-definition

of the density manifests itself in the scaling limit. More precisely, we are interested

in finding a rule to identify those points x, y for which the density is not well-defined

and characterize the limit shapes that those regions exhibit. This is what we call

the density problem.

Since for α = 0 we have a well defined density, the possible cause of the ill-

definition of the density must be related to the NNN hopping. So let us examine

what features the NNN hopping brings in that were not there with NN hopping

only.

Let us start considering the sign of the density. The denominator is always

positive, since

〈ψ1|e−2RHα|ψ1〉 =
∥∥e−RHα |ψ1〉

∥∥2 , (1.31)

so

sign
(
〈ψ1|ρx(y)|ψ1〉R

)
= sign

(
(e−(R−y)Hα |ψ1〉)†(c†xcxe−(R+y)Hα |ψ1〉)

)
. (1.32)
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In fact, the term c†xcx, acting on a linear combination of position states, cannot

change the sign of any coefficient: being nothing but the occupation operator of the

site x, it just multiplies each component either by one or zero. So in the end

sign
(
〈ψ1|ρx(y)|ψ1〉R

)
= sign

(
(e−(R−y)Hα |ψ1〉)†(e−(R+y)Hα |ψ1〉)

)
. (1.33)

We are interested in the application of all the possible powers of the Hamilto-

nian to a generic states (they come from the expansion of the exponential). A

first trivial observation is that if the application of the Hamiltonian to all the

possible position states gave a linear combination of position states whose coeffi-

cients were all positive, then, given the orthogonality of the states, the product

(e−(R−y)Hα |ψ〉)†(e−(R+y)Hα |ψ〉) would just be a sum of positive terms, and hence it

would be positive. But this does not happen in our case.

Let us consider α = 0 and discuss what are the consequences of the application

of (R±y
2
H0)

n = (R±y
2

∑
i(c
†
ici+1 + c†i+1ci))

n, ∀n ∈ N, to the generic state |ψ〉. A

fact that comes in handy is that the coefficients R±y
2

are always positive, so we

can just restrict our attention to the sign given by the application of (
∑

i(c
†
ici+1 +

c†i+1ci))
n. The application of this Hamiltonian to any positive-coefficients linear

combination of states gives another (possibly the same) positive-coefficients linear

combination: c†i+1ci gives zero if applied to a position state that does not involve c†i ,

while substitutes c†i with c†i+1 if c†i is present (an analogous thing holds forc†ici+1). In

physical terms, we say that the number of fermions is kept constant and the fermions

cannot jump over each other so they keep the initial order. So, in the end, the scalar

product for the density is taken between two generally different linear combination

of position states with positive coefficients; hence it gives a positive density for every

y.

On the other hand, if we consider the NNN hopping, it is not true anymore

that the application of the Hamiltonian to a general positive-coefficients linear com-

bination of position states gives another positive-coefficients state. This is easily

understood from the following example:

(c†1+2c1) |1100〉 = (c†3c1)c
†
1c
†
2 |0000〉 = c†3c

†
2 |0000〉 = −c†2c

†
3 |0000〉 = − |0110〉 . (1.34)

In physical language, the NNN hopping allows fermions to jump over each other and

hence, in doing so, to exchange their position. The position exchanging generates

a minus sign due to the fermionic nature of the particles. Of course, this does

not necessarily imply a negative output: if the components of e−(R+y)Hα |ψ1〉 with

a negative coefficient were the same in e−(R−y)Hα |ψ1〉, then the minus signs would

compensate each other in the full product (1.33). But this is not the case, since the

same component can be generated from the same initial state with different signs:
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consider for example

|1100〉 → |1010〉 → |0110〉 , (1.35)

|1100〉 → − |0110〉 . (1.36)

We conclude that there is nothing guaranteeing that the density is positive in the

general case.

For what concerns the density being greater than one, we could apply the same

arguments we just did to the hole density and then use the symmetry particles-holes,

noticing that a negative hole density precisely implies a particle density greater than

one.

Notice that, as implied by this arguments, problems in density arise due to the

non-trivial signs introduced by fermions jumping over each other, so one can think to

remove the density problem by diminishing the initial (and final) density of fermions.

This will lead us, later on, to consider a generalization of the domain wall geometry.

1.4.5 Cases with well-defined density

Before tackling the density problem from an analytic point of view, it is useful

to identify two situations in which the density is well defined even in presence of

the NNN hopping term. This will provide a first check for the theoretical prediction

that we shall make.

Horizontal axis

To show that the density is positive for y = 0, we simply rewrite it as the norm

of a certain state:

ρ(x, y = 0) =
〈ψ1|e−RHαc†xcxe−RHα |ψ1〉
〈ψ1|e−2RHα |ψ1〉

=

∥∥cxe−RHα |ψ1〉
∥∥2

‖e−RHα |ψ1〉‖2
≥ 0. (1.37)

Then we can use the particle-hole symmetry to imply that it is also smaller than

one: the density of particles is smaller than one if and only if the density of holes is

positive, and to prove that the hole density is positive we can just employ the same

trick we used above.

Note that this is true for any Hermitian Hamiltonian, but it does not hold for

general imaginary time y.

Pure NNN hopping

Consider the Hamiltonian

H ′ ≡ −1

2

∑
x∈Z̃

(
c†x+2cx + c†xcx+2

)
. (1.38)
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Moving by steps of two sites each, one fermion that begins in the site x ∈ Z̃ can end

up just in sites x+2j, with j ∈ Z. So the lattice can be divided into two sub-lattices,

described by the sites i+ 1
2
, with i odd and even respectively, and the fermions into

two classes, according to which sub-lattice they move within. The key-observation

is that the order of fermions in each class does not change, in the sense that they

cannot jump over each other.

Now consider any position state and look at it as obtained from a certain initial

position state through a certain number of applications of the NNN hopping (to

make this possible, the two states must have the same number of fermions in odd

and even lattice sites). The relative sign between the two states is given by −1

to the differences in the alternation of fermions in odd and even lattice sites, so

the coefficient will not be necessarily positive. But the fundamental point is that

there is a unique way to reach one given final state, and this is because the order of

the particles inside the two sub-lattices cannot change (and particles cannot change

sub-lattice). So, provided that we start from the same initial state, the coefficient’s

sign of any component on the position basis is uniquely determined and always the

same. In the end, this means that the minus signs will compensate each other in

the full product (1.33), thus leading to a positive density.

Again, since this argument holds for the hole density as well and the particle

density is smaller than one if and only if the hole density is positive, we conclude

that the density for NNN hopping is between zero and one.

When considering the full Hamiltonian Hα, the argument we gave is not true

anymore because the distinction between two (or more) ordering-preserving classes

of fermions is not possible anymore.
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Chapter 2

The Tools

2.1 Free fermions’ techniques

2.1.1 Some useful properties

In Section 1.2 we recalled that a set of fermionic operators defined for a lattice

obeys the canonical anti-commutation relations

[c†i , cj]+ = δij,

[ci, cj]+ = 0,

[c†i , c
†
j]+ = 0,

(2.1)

for all i, j ∈ {1, ..., L}, where L is the number of lattice sites. Then we introduced

the vacuum state |0〉 as the state that is annihilated by all the annihilation operators:

ci |0〉 = 0, ∀i ∈ {1, ..., L}. In the following, we assume that it is normalized.

We also defined a free, or quadratic, lattice fermion theory as a quantum many-

body system ruled by a Hamiltonian that can be written as a quadratic polynomial

in the fermionic operators. The (Hermitian) Hamiltonian of a free theory thus reads

H =
L∑

i,j=1

(
Aijc

†
icj +B∗ijc

†
ic
†
j +Bijcicj

)
, (2.2)

where A is Hermitian. We are ignoring the irrelevant constant term, since it would

just shift every energy level by the same amount, and we are considering that linear

terms can be absorbed in bilinear ones by a redefinition of the fermionic operators.

When we restrict to models whose evolution conserve the number of particles

(i.e. whose Hamiltonian commutes with the number operator
∑L

i=1 c
†
ici), the most

general free Hamiltonian is

H =
L∑

i,j=1

Aijc
†
icj, (2.3)
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where A is Hermitian. We will consider only this type of systems, since our model’s

Hamiltonian (1.17) belongs to this class.

Thanks to the spectral theorem, we know that the matrix A can be diagonalized

by the means of an orthonormal basis. The eigenvalue equations read (assume no

multiplicities for simplicity)

L∑
j=1

Aiju
(k)
j = εku

(k)
i , ∀i, k ∈ {1, ..., L}, (2.4)

with the eigenvectors satisfying the orthonormality equation

L∑
j=1

u
(k)
j u

(q)
j = δkq, ∀k, q ∈ {1, ..., L}. (2.5)

This allows also to rewrite the Hamiltonian in its diagonalized form, that is as a sum

of occupation number operators multiplied by the respective single-particle energies

εk: introducing the operators

d†k ≡
L∑
j=1

u
(k)
j c†j, dk ≡

L∑
j=1

(
u
(k)
j

)∗
cj, k ∈ {1, ..., L}, (2.6)

we have

H =
L∑
k=1

εkd
†
kdk. (2.7)

The following property of the diagonalized Hamiltonian will prove itself very

useful when we will consider the imaginary-time evolution of fermionic operators:

eτd
†
idid†je

−τd†idi = eτδijd†i , (2.8)

where δij is the Kronecker symbol.

Proof. It is a direct consequence of the canonical anti-commutation relations. For a

start, notice that, due to the idempotence of the operator d†idi (that stems directly

from the canonical anti-commutation relations), we have

eτd
†
idi =

∞∑
n=0

(τd†idi)
n

n!
= 1 +

∞∑
n=1

τnd†idi
n!

= 1 + (eτ − 1)d†idi. (2.9)

Hence we obtain

eτd
†
idid†je

−τd†idi =
(

1 + (eτ − 1)d†idi

)
d†j

(
1 + (eτ − 1)d†idi

)
, (2.10)

and now it is just a matter of computing the product and using again the idempo-

tence of d†idi to get the assertion.
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As a simple application of the previous property, we have

e
∑
i τid

†
idid†je

−
∑
i τid

†
idi = eτjd†j. (2.11)

We will be mostly interested in a free fermion theory defined on an infinite lattice.

This means that the indices of our set of fermionic operators ci, c
†
i will take values

over an infinite set: rather than i ∈ {1, ..., L}, we use i ∈ Z̃. The canonical anti-

commutation relations between these operators are still described by eq. (2.1). If

the Hamiltonian is translational invariant (meaning that it is invariant by a shift of

all the lattice indices), as will always be the case in the models we are interested

in, it can be diagonalized by the means of Fourier series, going to what we will call

momentum basis {d(k), d†(k)}k∈[−π,π). The momentum basis is defined by

c†x =

∫ +π

−π

dk

2π
e−ikxd†(k),

cx =

∫ +π

−π

dk

2π
eikxd(k).

(2.12)

Indeed we have

H =
∑
m,n∈Z

f(m− n)c†
m+ 1

2

cn+ 1
2

=
∑
n,r∈Z

f(r)

∫ +π

−π

dp

2π

∫ +π

−π

dq

2π
e−i(r+n+

1
2
)pd†(p)ei(n+

1
2
)qd(q)

=

∫ +π

−π

dp

2π
ε(p)e−i(r+n)pd†(p)d(p),

(2.13)

where we used the Dirac comb representation
∑

s∈Z δ(k − 2πs) = 1
2π

∑
n∈Z eikn and

we defined the dispersion relation as ε(p) ≡
∑

r∈Z f(r)eirp. It can be shown that

the canonical anti-commutation relations (2.1) imply the following algebra for the

momentum-basis operators:

[d(k)†, d(k′)]+ = 2πδ(k − k′),
[d(k), d(k′)]+ = 0,

[d†(k), d†(k′)]+ = 0,

(2.14)

∀k, k′ ∈ [−π,+π). We call them canonical anti-commutation relations as well.

For these operators, it can be proved that

e
∫+π
−π

dk
2π
τ(k)d†(k)d(k)d†(q)e−

∫+π
−π

dk
2π
τ(k)d†(k)d(k) = eτ(q)d†(q), (2.15)

which is a continuous version of eq. (2.11).
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2.1.2 Wick’s theorem

Wick’s theorem in its original form [46] is essentially a way of rewriting the

product of some operators obeying canonical commutation or anti-commutation

rules in a way that involves just normal-ordered products and some quantities, called

contractions between commuting (or anti-commuting) operators, that behave as c-

numbers. This reorganization is particularly handy when one wants to evaluate the

expectation value of the initial product over some state and, in the end, it allows

to express it in terms of the two-point correlation functions. It will be sufficient

for our purpose to state the theorem as applied to vacuum expectation values of

fermionic operators’ products, with the final task to evaluate (1.16). In this version,

the theorem reads as follows:

Let fj be linear combinations of some fermionic operators {di, d†i}
with i ∈ {1, ..., L}. Wick’s theorem states that the vacuum expectation

value of any product of the fj can be written as a function of the two-

point correlation function only; in particular, it can be non-zero only if

we consider an even number of operators, in which case

〈0|f1f2...f2N |0〉 = Pf1≤i,j≤2N (〈0|T [fifj]|0〉) , (2.16)

where

T [fifj] =


fifj, if i < j

0, if i = j

−fjfi, if i > j

. (2.17)

The operator Pf is called Pfaffian and, given an anti-symmetric 2N × 2N matrix,

is defined as

PfA ≡ Pf1≤i,j≤2N (Aij) ≡
∑
σ∈S2N

(−1)σ
1

2NN !
Aσ(1)σ(2)...Aσ(2N−1)σ(2N), (2.18)

where Sn and (−1)σ are the set of permutations of n elements and the signature of

the permutation σ respectively (the signature of a permutation is −1 to the number

of exchanges between couple of elements in the original sequence to get the particular

permutation).

Proof. During this proof, we will simplify the notation using 〈A〉 ≡ 〈0|A|0〉.
Let us start proving the theorem in the special case in which, instead of being a

linear combination of fermionic operators, each fi corresponds to just one of them.

In other words, we begin the proof considering the particular case of the vacuum

expectation value 〈b1...b2N〉 of the operators

bi ∈ {d1, d2, ..., dL, d†1, d
†
2, ..., d

†
L}.
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The first observation is that, if b2N is an annihilation operator, then the identity we

want to prove is trivially satisfied, since both sides give zero. So we have just to

consider the vacuum expectation value

〈b1b2...b2N−1d†j〉 ,

where j ∈ {1, ..., L}. The proof that links this vacuum expectation value to a

Pfaffian is done by induction; here we follow [47] and [48].

The case N = 1 is trivially satisfied: the vacuum expectation value is non-zero only

if b1 = dj, in which case

〈b1b2〉 ≡ 〈djd†j〉 =
1

2

(
〈djd†j〉 − 〈d

†
jdj〉

)
= Pf1≤i,j≤2 (〈T [bibj]〉) .

Let us thus suppose that the result is true for N−1 and turn back to 〈b1b2...b2N−1d†j〉.
The idea is to (anti)commute d†j with all the other operators and bring it to the

leftmost position, where it annihilates the vacuum expectation value by acting on

〈0|. We have

〈b1b2...b2N−1d†j〉 =
2N−1∑
i=1

(−1)Si 〈b1...bi−1bi+1...b2N−1〉 [bi, d†j]+,

where Si = 2N− i is the number of exchanges between d†j and its left neighbour that

are required to bring d†j from the rightmost position to the (i + 1)-th position, or,

equivalently, the number of exchanges between bi and its right neighbour to bring

bi from the i-th position to the (2N − 1)-th position (this is the interpretation we

are going to use). Going back to the notation d†j → b2N , we can write

〈b1b2...b2N〉 =
2N−1∑
i=1

(−1)Si 〈b1...bi−1bi+1...b2N−1〉 〈bib2N〉 .

At this point we use the induction hypothesis to compute 〈b1...bi−1bi+1...b2N−1〉.
From the induction hypothesis we get a sum over permutations

∑
σ∈S2(N−1)

(−1)σ that

can be merged with the sum
∑2N−1

i=1 (−1)Si that was already present, reconstructing

the sum over permutations
∑

σ∈S2N−1
(−1)σ; thanks to the interpretation we gave

to Si, it is not difficult to recognize that the signature of the new permutation is

obtained correctly. So

〈b1b2...b2N〉 =
∑

σ∈S2N−1

(−1)σ
〈T [bσ(1)bσ(2)]〉 ... 〈T [bσ(2N−3)bσ(2N−2)]〉 〈bσ(2N−1)b2N〉

2N−1(N − 1)!

=
∑

σ∈S2N−1

(−1)σ
〈T [bσ(1)bσ(2)]〉 ... 〈T [bσ(2N−3)bσ(2N−2)]〉 〈T [bσ(2N−1)b2N ]〉

2N(N − 1)!

−
∑

σ∈S2N−1

(−1)σ
〈T [bσ(1)bσ(2)]〉 ... 〈T [bσ(2N−3)bσ(2N−2)]〉 〈T [b2Nbσ(2N−1)]〉

2N(N − 1)!
.
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As the last step, notice that the numerators in the last equality are invariant by

moving the last factor in any position (they must be, since only products between

scalars are involved), so we can write the whole term as the sum over all the possible

cases divided by their number, which is N and which reconstruct N !. In conclusion,

the whole expression can be written as a sum over the permutation of 2N elements.

To be sure that we found the right signs for the permutations, notice that the fact

that 〈T [bσ(2N−1)b2N ]〉 moves in each possible position does not affect the signature

of the permutation since we are moving couples of elements together. Summarizing,

we have proven that

〈b1b2...b2N〉 = Pf1≤i,j≤2N 〈T [bibj]〉 .

Let us turn now the general case. To simplify the notation, let us introduce the

operators ai = di and aL+i = d†i , ∀i ∈ {1, ..., L}. We can write the generic linear

combinations as

fj =
2L∑
kj=1

α
(j)
kj
akj

and the general vacuum expectation value as

〈f1...f2N〉 =
2L∑
k1=1

α
(1)
k1
...

2L∑
k2N=1

α
(2N)
k2N
〈ak1 ...ak2N 〉 .

The factor 〈ak1 ...ak2N 〉 satisfies the hypothesis of the previous result and it can be

written as a Pfaffian:

〈f1...f2N〉

=
2L∑
k1=1

α
(1)
k1
...

2L∑
k2N=1

α
(2N)
k2N

∑
σ∈S2N

(−1)σ
〈T [aσ(k1)aσ(k2)]〉 ... 〈T [aσ(k2N−1)aσ(k2N )]〉

2NN !
.

The sums over ki can be brought inside the vacuum expectation values of the ordered

products and used to reconstruct the various f -operators, which concludes the proof.

As an application of Wick’s theorem, let us see how (2.16) simplifies when the first

N operators are a linear combination of the annihilation operators only and the last

N operators are a linear combination of the creation operators only. We can adapt

the notation for this case using gi ≡ fN−i for the first N operators and hi ≡ fN+i for

the other ones (the choice in the indices is done so that the sign of the expression we

are going to get is the simplest possible). This case is simpler than the general one

because all the permutations that involve the vacuum expectation value of a product

of two g-operators (or, equivalently, of two h-operators) give a null contribution

34



2.1. FREE FERMIONS’ TECHNIQUES

thanks to the canonical anti-commutation relations; so each permutation which

gives a non-zero contribution will involve the vacuum expectation value where each

g-operator is coupled to an h-operator. Moreover, since by assumption the original

product has the h operators on the right, we can drop the time ordering, just writing

T [gihj]− T [hjgi] = 2gihj, ∀i, j ∈ {1, ..., N}. (2.19)

These observations imply that, in order to get all the permutations that give a

non-zero contribution to the vacuum expectation value, it suffices to consider the

permutations of the g-operators alone and the h-operators alone: all the (potentially)

non-zero contributions are given by

〈0|gσ(1)hσ̃(1)|0〉 ... 〈0|gσ(N)hσ̃(N)|0〉 . (2.20)

To fix the sign of each of these contributions, notice that the number of exchanges

that have to be done to connect the two sequences

σ(N)...σ(1)σ̃(1)...σ̃(N)→ σ(1)σ̃(1)...σ(N)σ̃(N) (2.21)

is always even. This means that the signature of the permutation between the f -

operators of Wick’s theorem that give 〈gσ(1)hσ̃(1)〉 ... 〈gσ(N)hσ̃(N)〉 is obtained as the

product of the signature of σ and the signature of σ̃.

Finally, we get

〈0|gN ...g1h1...hN |0〉 =
∑
σ∈SN

(−1)σ
∑
σ̃∈SN

(−1)σ̃
〈0|gσ(1)hσ̃(1)|0〉 ... 〈0|gσ(N)hσ̃(N)|0〉

N !

=
1

N !

N∑
µ1=1

...

N∑
µN

N∑
ν1=1

...

N∑
νN

εµ1...µNεν1...νN 〈0|gµ1hν1|0〉 ... 〈0|gµNhνN |0〉

= det
1≤i,j≤N

〈0|gihj|0〉

⇒ 〈0|gN ...g1h1...hN |0〉 = detM, where Mij ≡ 〈0|gihj|0〉 . (2.22)

This result is the application of Wick’s theorem we are mostly interested in.

So far the Hamiltonian never entered in our computation. This means that the

validity of the result does not depend on the underlying being free. Indeed, the

derivation is based just on the algebra of the operators. Now we want to apply the

relations we found to time-dependent operators and the fact that the theory is free

becomes important.

Suppose we want to compute the vacuum expectation value of a product of

some operators fi that can be written as a linear combination of the operators
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diagonalizing the Hamiltonian {dj, d†j}j∈{1,...,L}, but that are considered at different

times. Thanks to the property (2.11), we have

fi(τ) =eτHfie
−τH = eτH

(
L∑
j=1

(
αijdj + βijd

†
j

))
e−τH

=
L∑
j=1

(
αije

τ
∑
k εkd

†
idkdje

−τ
∑
k εkd

†
idk + βije

τ
∑
k εkd

†
idkd†je

−τ
∑
k εkd

†
idk
)

=
L∑
j=1

(
αije

−τεjdj + βije
τεjd†j

)
,

which means that the operators fi at different times are still a linear combination of

anti-commuting operators at the same time (the operators diagonalizing the Hamil-

tonian). Notice also that if we consider real time instead of imaginary time, this

conclusion still apply and we can state the following:

For a free theory, Wick’s theorem (in both the formulations (2.16)

and (2.22) that we saw) holds for operators fi =
∑L

j=1

(
αijdj + βijd

†
j

)
,

even when they are considered at different times.

We remark that this statement relies on the theory being free, since we used (2.11).

2.2 Semi-infinite Toeplitz matrices

2.2.1 Definition

A semi-infinite Toeplitz matrix is a matrix T = (Tij)i,j∈N∪{0} whose elements

depend only on the difference between the indices i − j: Tij = [g]i−j (following the

traditional notation in Toeplitz matrices’ literature, we index the matrix elements

starting from zero). In the following, it will be convenient to interpret [g]l as the

l-th Fourier coefficient of a function g(k), called symbol (the square brackets are

indeed the usual notation for Fourier coefficient in the Toeplitz matrix literature)

In formulas:

[f ]l =

∫ +π

−π

dk

2π
e−ilkf(k) , f(k) =

∑
l∈Z

eikl[f ]l. (2.23)

To identify the Toeplitz matrix whose elements are the Fourier coefficients of the

symbol g(k), we use the notation T (g); for more detailed theory of Toeplitz matrices,

see e.g. [49].

This definition could be generalized to a semi-infinite block Toeplitz matrix, where

the elements’ property of depending only on the difference of the indices holds just
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for the blocks of the matrix. In fact, all the properties we are going to see still hold if

the symbol is a matrix, in which case the various products should be read as matrix

products (we paid attention to the factors’ order).

In the remainder of the section, we will introduce some notation and show some

properties of the semi-infinite Toeplitz matrices that will be useful later.

2.2.2 Wiener-Hopf decomposition

The central role in the properties of semi-infinite Toeplitz matrices is played by

the Wiener-Hopf decomposition of a function g(k), which consists in writing g(k) as

the product of two functions

g(k) = g−(k)g+(k), (2.24)

where g+ (resp. g−) only has non-negative (resp. non-positive) Fourier coefficients.

In other words, the Wiener-Hopf decomposition of the function g(k) consists in

finding two functions g+(k) and g−(k) such that

[g−]−m = 0 ∧ [g+]m = 0, ∀m ∈ Z−, (2.25)

and such that their product gives g(k). The two function g±(k) can be written as

g+(k) =
+∞∑
m=0

[g+]meimk and g+(k) =
0∑

m=−∞

[g−]meimk. (2.26)

The way the Wiener-Hopf decomposition in usually obtained, at least when g(k)

is scalar and has a well defined logarithm, is by writing

g(k) = exp(log g(k))

= exp

(∑
m∈Z

[log g]meikm

)

= exp

(∑
m<0

[log g]meikm

)
exp

(∑
m≥0

[log g]meikm

) (2.27)

and then identifying g−(k) with the first factor and g+(k) with the second one

(since the sums in the exponents have either non-negative or non-positive modes,

the same thing will be hold for the series obtained by expanding the two exponentials

individually).

Finding a Wiener-Hopf factorization is in general tremendously difficult, espe-

cially when we consider the case in which the functions are not scalar.

The Wiener-Hopf decomposition g(k) = g−(k)g+(k) is essentially the Toeplitz

matrices version of the UL decomposition, where we recall that the UL decompo-

sition of given a matrix consists in writing the matrix as the product of an upper
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triangular matrix, a lower triangular matrix and, potentially, a permutation. In

particular, the claim is that

T (g) = T (g−)T (g+), (2.28)

with T (g−) and T (g+) being upper and lower triangular respectively.

Proof. First of all, notice that, by definition of g−(k) and g+(k), the statement about

T (g−) and T (g+) being upper triangular and lower triangular is trivial.

Then notice also that the Wiener-Hopf decomposition is in principle always possible

for integrable ln(g(k)), since it just relies on the possibility of Fourier-decomposing

ln(g(k)) and then separate its modes. Let us show that it does indeed reconstruct

the matrix:

(T (g−)T (g+))mn =
+∞∑
l=0

T (g−)mlT (g+)ln =
+∞∑
l=0

[g−]m−l[g
+]l−n (2.29)

Now, since n ≥ 0, a necessary (though not sufficient) condition for the matrix

element [g+]l−n to be non-zero is l ≥ 0. This means that we can extend the sum

over all the integers: it just amounts to add to the sum we already have infinite

zeros. So

(T (g−)T (g+))mn =
∑
l∈Z

[g−]m−l[g
+]l−n

=
∑
l∈Z

∫ +π

−π

dk

2π
e−ik(m−l)g−(k)

∫ +π

−π

dk′

2π
e−ik

′(l−n)g+(k′)

=

∫ +π

−π

dk

2π
g−(k)g+(k)e−ikmeikn

=

∫ +π

−π

dk

2π
g(k)e−ik(m−n) = [g]m−n = (T (g))mn,

(2.30)

where we used the Dirac comb representation
∑

s∈Z δ(k − 2πs) = 1
2π

∑
l∈Z eilk.

The UL decomposition is a key step when inverting a matrix or computing the

determinant of a matrix in many numerical and theoretical techniques and this is

precisely what we will use the Wiener-Hopf decomposition for. (Actually the LU

decomposition is usually used rather than the UL decomposition, but they have the

same properties.)

2.2.3 Inversion formula

Consider an invertible semi-infinite Toeplitz matrix T (g) and let

g(k) = g−(k)g+(k) (2.31)
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be the Wiener-Hopf decomposition of the symbol g(k). The inverse of T can be

computed as follows:

(T−1(g))mn =
∞∑
r=0

[(g+)−1]m−r[(g
−)−1]−n+r , (2.32)

or, equivalently,

(T−1(g))mn =

min(m,n)∑
r=0

[(g+)−1]m−r[(g
−)−1]−n+r. (2.33)

We prefer to work with the infinite sum version because infinite sums are usually

easier to treat. The second version of the inversion formula can be more useful for

numerical computation.

Proof. The first step is to imply that (T (g±))
−1

= T ((g±)−1). First of all, notice

that (g+(k))−1 has itself just positive Fourier coefficients. This is because

(g+(k))−1 =
1∑+∞

l=0 eikl[g+]l
, (2.34)

which, if [g+]0 6= 0, is expanded as the geometric series and is again a series in positive

powers of eikl.1 In fact, we know that [g+]0 6= 0 since otherwise the triangular matrix

T (g+) would have zeros on the principal diagonal and it would not be invertible,

implying that neither T (g) is and invalidating the hypothesis. An analogous thing

holds for g−(k). This tells us that, for l < 0, either [g±]m−l or [(g±)−1]l−m is zero

∀m ≥ 0 and allows to write(
T
(
g±
)
T
(
(g±)−1

))
mn

=
+∞∑
l=0

[g±]m−l[(g
±)−1]l−n =

∑
l∈Z

[g±]m−l[(g
±)−1]l−n

=
∑
l∈Z

∫ +π

−π

dk

2π
e−ik(m−l)g±(k)

∫ +π

−π

dk′

2π
e−ik

′(l−n)(g±(k′))−1

=

∫ +π

−π

dk

2π
e−ikmeikn = δmn,

(2.35)

where we used again where we used the Dirac comb representation
∑

s∈Z δ(k−2πs) =
1
2π

∑
l∈Z eilk. Summarizing

(T−1(g))mn = (T−1(g+)T−1(g−))mn =
∞∑
r=0

[(g+)−1]m−r[(g
−)−1]−n+r. (2.36)

1This should be taken more as an heuristic argument than as a formal statement, since we are

not discussing the convergence issues that arise in the summation of the geometric series. We refer

to [49] for a formal discussion. In any case, this will not be relevant in all the cases that will be

treated later on.
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We can use again the fact that (g−(k))−1 has only non-positive Fourier coefficients

to restrict the sum’s domain:

(T−1(g))mn = (T−1(g+)T−1(g−))mn =

min(m,n)∑
r=0

[(g+)−1]m−r[(g
−)−1]−n+r. (2.37)

This gives also the second representation of T−1 that we anticipated.

Notice that in this proof it was important that the matrix under consideration

was semi-infinite: without the infinite sums we could not have reconstructed the

various delta functions that we used. Let us just cite that a similar result holds for

finite Toeplitz matrices and it is usually referred to as Widom’s formula [50].

Similar to what we did for the inverse, the Wiener-Hopf decomposition could be

employed to find a determinant formula for Toeplitz matrices. We are not going to

do that, since we are interested in the inversion formula only, but it can be found in

[51].
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Chapter 3

Exact Two-point Function

3.1 Scope of the chapter

We start from the definition (1.16) of the two-point correlation function in do-

main wall geometry that we gave in Chapter 1; it is repeated here for convenience:

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R ≡

〈ψ1|e−(R−y)Hc†xe(y
′−y)Hcx′e

−(R+y′)H |ψ1〉
〈ψ1|e−2RH |ψ1〉

. (3.1)

where x, x′ ∈ Z̃ and |ψ1〉 is the state in which the lattice is completely filled on the

left of the origin and completely empty on the right. The particular Hamiltonian

H of the system will not be important in this chapter, provided it is quadratic,

time independent and invariant by a shift in the lattice indices (so that it can be

diagonalized by Fourier series).

In this chapter we aim at constructing an exact integral formula for this quantity,

providing an alternative derivation of a known result. The usual derivation uses a

procedure known as bosonization, see e.g. [28, 52], while here we provide a derivation

in two steps: first we use Wick’s theorem to write the correlation function as a

product of semi-infinite matrices; then we exploit semi-infinite Toeplitz matrices’

properties to simplify the result. With respect to bosonization, our derivation may

be extended straightforwardly to other geometries.

3.2 Two-point function as a product of matrices

We consider the quantity

I ≡ 〈ψ1|eβHc†xeγHcx′eδH |ψ1〉
〈ψ1|e(β+γ+δ)H |ψ1〉

, (3.2)

which is a concise way to write the two-point function (3.1). We are going to rewrite

it as a product of semi-infinite matrices via Wick’s theorem (2.22). The first step to

41



CHAPTER 3. EXACT TWO-POINT FUNCTION

apply the theorem is to reorder the fermionic operators according to the convention

we used to state (2.22). To do that, we first go to the momentum basis, obtaining

eβHc†xe
γHcx′e

δH =

∫ +π

−π

dk

2π

∫ +π

−π

dk′

2π
e−ikxeik

′x′eβHd†(k)eγHd(k′)eδH

=

∫ +π

−π

dk

2π

∫ +π

−π

dk′

2π
e−ikxeik

′x′e(β+γ)He−γHd†(k)eγHd(k′)eδH .

(3.3)

Then we apply the free-fermions property (2.15) to get

eβHc†xe
γHcx′e

δH =

∫ +π

−π

dk

2π

∫ +π

−π

dk′

2π
e−ikxeik

′x′e(β+γ)He−γε(k)d†(k)d(k′)eδH

=

∫ +π

−π

dk

2π

∫ +π

−π

dk′

2π
eik(x

′−x)e(β+γ)He−γε(k)eδH 〈0|d(k)d†(k)|0〉

−
∫ +π

−π

dk

2π

∫ +π

−π

dk′

2π
e−ikxeik

′x′e(β+γ)He−γε(k)d(k′)d†(k)eδH ,

(3.4)

where we used the canonical anti-commutation relations (2.14) and we wrote the

Dirac delta function coming from them as 〈0|d(k)d†(k)|0〉 = 2πδ(k− k′) (remember

we are assuming 〈0|0〉 = 1). Finally, using again (2.15), this time in the opposite

direction, and going back to the position basis, we finally have

eβHc†xe
γHcx′e

δH = 〈0|cx′c†x(−γ)|0〉 e(β+γ+δ)H − e(β+γ)Hcx′e
−γHc†xe

(γ+δ)H (3.5)

and

I = 〈0|cx′c†x(−γ)|0〉 − 〈ψ1|e(β+γ)Hcx′e−γHc†xe(γ+δ)H |ψ1〉
〈ψ1|e(β+γ+δ)H |ψ1〉

, (3.6)

which is suitable for the application of Wick’s theorem (2.22):

Now, just for the following intermediate step, we will assume the number of lat-

tice sites to be finite and equal to 2l, to simplify the notation. With this convention,

the sites {−1/2,−3/2, ...,−l+ 1/2} are filled and the sites {1/2, 3/2, ..., l− 1/2} are

empty. After the application of Wick’s theorem we will take the limit l → +∞.

In this way, we can explicitly turn our expectation values in vacuum expectation

values:

〈ψ1|e(β+γ)Hcx′e−γHc†xe(γ+δ)H |ψ1〉
= 〈0|c− 1

2
...c−l+ 1

2
e(β+γ)Hcx′e

−γHc†xe
(γ+δ)Hc†−l+ 1

2

...c†− 1
2

|0〉

= 〈0|c−l+ 1
2
(0)...c− 1

2
(0)cx′(β + γ)c†x(β)c†− 1

2

(β + γ + δ)...c†−l+ 1
2

(β + γ + δ)|0〉 ,
(3.7)

where we used eH |0〉 = |0〉 and we reordered the fermionic operators in the last

equality to make the Wick’s theorem expression look nicer (this operation does not

introduce any sign because we do the same permutation on both the right and the

left).
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3.2. TWO-POINT FUNCTION AS A PRODUCT OF MATRICES

Finally, from Wick’s theorem (2.22) and using

〈0|cm(y1)c
†
n(y2)|0〉 = 〈0|cmc†n(y2 − y1)|0〉 , (3.8)

we have

〈ψ1|e(β+γ)Hcx′e−γHc†xe(γ+δ)H |ψ1〉 = detM, (3.9)

with

M =

(
〈0|cx′c†x(−γ)|0〉 uT

v T

)
. (3.10)

Here u and v are l-components column vector and T is a l × l-matrix, defined as

vn ≡ 〈0|c−n− 1
2
c†x(β)|0〉 , (3.11)

um ≡ 〈0|cx′c†−m− 1
2

(δ)|0〉 , (3.12)

Tmn ≡ 〈0|c−m− 1
2
c†−n− 1

2

(β + γ + δ)|0〉 , (3.13)

where we indexed the matrix and vector elements starting from zero, as usually done

in Toeplitz matrices literature.

A similar computation leads to

〈ψ1|e(β+γ+δ)H |ψ1〉 = detT, (3.14)

with T defined as above.

Summarizing:

I = 〈0|cx′c†x(−γ)|0〉 − detM

detT
. (3.15)

At this point it comes in handy to define the matrix T̃ =

(
1 0

0 T

)
, so that

detM

detT
=

detM

det T̃
= det(MT̃−1) = det

(
〈0|cx′c†x(−γ)|0〉 uTT−1

v Il

)
= 〈0|cx′c†x(−γ)|0〉+

l−1∑
n=0

(−1)n(uTT−1)n det
(
v|An

)
,

(3.16)

where An is a l × (l − 1)-matrix such that the n-th row is composed only by zeros

and without the n-th row the matrix equals Il−1. Now, if we expand det
(
v|An

)
with respect to the first column, the only non-zero contribution comes from the

n-th element, which means

det
(
v|An

)
= (−1)n+1vn. (3.17)
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This implies

detM

det T̃
= 〈0|cx′c†x(−γ)|0〉+

l−1∑
n=0

(−1)n(−1)n+1(uTT−1)nvn

= 〈0|cx′c†x(−γ)|0〉 −
l−1∑

m,n=0

umT
−1
mnvn,

(3.18)

so that, going back to infinite size,

I =
+∞∑
m,n=0

umT
−1
mnvn, (3.19)

with

um = 〈0|cx′c†−m− 1
2

(δ)|0〉 ,

vn = 〈0|c−n− 1
2
c†x(β)|0〉 ,

Tmn = 〈0|c−m− 1
2
c†−n− 1

2

(β + γ + δ)|0〉 .

(3.20)

The application of this result to the two-point correlation function straightfor-

wardly gives

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R =

+∞∑
m,n=0

umT
−1
mnvn,

where

um = 〈0|cx′c†−m− 1
2

(−(R + y′))|0〉

vn = 〈0|c−n− 1
2
c†x(−(R− y))|0〉

Tmn = 〈0|c−m− 1
2
c†−n− 1

2

(−2R)|0〉

. (3.21)

As anticipated, Wick’s theorem allowed us to write the two-point correlation function

as a product of semi-infinite matrices. At this point, though, the expression for the

inverse of T remains implicit, but we can fix this using the results of Section 2.2.

3.3 Two-point function as a double integral

We start by showing that the matrix T introduced in the previous section is

indeed a semi-infinite Toeplitz matrix. To do so, we use the momentum basis and
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3.3. TWO-POINT FUNCTION AS A DOUBLE INTEGRAL

employ the property (2.15) of free fermions to write the matrix elements as integrals:

Tmn =

∫ +π

−π

dk

2π

∫ +π

−π

dq

2π
eiq(−m−

1
2
)e−ik(−n−

1
2
) 〈0|d(q)e−2RHd†(k)e2RH |0〉

=

∫ +π

−π

dq

2π
e−iq(m−n)e−2Rε(q),

(3.22)

where we have also used the canonical anti-commutation relations (2.14). Since the

generic element of T depends on the indices difference only (once the dispersion

relation and R are fixed), we conclude that T is a semi-infinite Toeplitz matrix.

Thus, following the notation introduced in Section 2.2, we can introduce a symbol

g(k) whose Fourier coefficients define the matrix elements of T as Tmn = [g]m−n.

For convenience, recall that our conventions on symbols and Fourier coefficients are

[g]l =

∫ +π

−π

dk

2π
e−iklg(k) , g(k) =

∑
l∈Z

eikl[g]l. (3.23)

In the present case we have trivially

g(k) = e−2Rε(k). (3.24)

To highlight the dependence on the imaginary time of the symbol, it is useful to

introduce the notation

gτ (k) ≡ e−τε(k), (3.25)

such that

Tmn =

∫ +π

−π

dq

2π
e−iq(m−n)g2R(q). (3.26)

Notice that also the elements of the two vectors involved in the expression of

the two-point function (3.21) can be expressed in function of the symbol gτ (k) for

certain imaginary times:

um ≡〈0|cx′c†−m− 1
2

(−(R + y′))|0〉

=

∫ +π

−π

dk

2π

∫ +π

−π

dq

2π
eiqx

′
e−ik(−m−

1
2
) 〈0|d(q)e−(R+y′)Hd(k)†e(R+y′)H |0〉

=

∫ +π

−π

dq

2π
eiq(x

′+m+ 1
2
)e−(R+y′)ε(q)

=

∫ +π

−π

dq

2π
eiq(x

′+m+ 1
2
)gR+y′(q) = [gR+y′ ]−m−x′− 1

2
,

(3.27)

and, analogously,

vn ≡〈0|c−n− 1
2
c†x(R− y)|0〉

=

∫ +π

−π

dq

2π
e−iq(n+

1
2
+x)gR−y(q) = [gR−y]n+x+ 1

2
,

(3.28)
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where, again, we used (2.15) and the canonical anti-commutation relations.

Now that we have identified T as a semi-infinite Toeplitz matrix, we can use the

property (2.32) to compute its inverse. Consider the Wiener-Hopf decomposition of

gτ (k), namely gτ (k) = g−τ (k)g+τ (k); thanks to (2.32), we have

(T−1)mn =
∞∑
r=0

[(g+)−1]m−r[(g
−)−1]−n+r. (3.29)

Using this and representing the vectors u and v via the respective symbols, we can

rewrite two-point function (3.21) as

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R =

+∞∑
m,n,r=0

[gR+y′ ]−m−x′− 1
2
[(g+2R)−1]m−r[(g

−
2R)−1]−n+r[gR−y]n+x+ 1

2
.

(3.30)

In the expression above, the indicesm,n assume only non-negative integer values,

since they are matrices’ indices. But the sum can be extended to all Z: since r ≥ 0,

all the additional terms will be zero due to either [(g+)−1]m−r or [(g−)−1]−n+r. So,

writing the Fourier coefficients as integrals, one gets

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R

=
∑
m,n∈Z

+∞∑
r=0

∫ +π

−π

dpdsdkdq

(2π)4
eim(p−q)+in(k−s)+ir(q−k)−is(x+ 1

2
)+ip(x′+ 1

2
) gR+y′(p)gR−y(s)

g+2R(q)g−2R(k)
.

(3.31)

Now we can use the two infinite sums to reconstruct two Dirac combs:∑
m,n∈Z

eim(q−p)+in(s−k) = (2π)2
∑
a∈Z

δ(p− q − 2πa)
∑
b∈Z

δ(s− k − 2πb); (3.32)

notice that this was possible only because we were able to extend the sums to the

whole Z, as a consequence of the Wiener-Hopf decomposition. As for the last sum,

e
1
2
i(q−k)

+∞∑
r=0

eir(q−k) = e
1
2
i(q−k)

+∞∑
r=0

eir(q−k+i0)

= e
1
2
i(q−k) 1

1− ei(q−k+i0)

=
1

2i sin(k−q
2
− i0)

.

(3.33)

Summarizing,

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R =

∫ +π

−π

dk

2π

∫ +π

−π

dq

2π

e−ikx+iqx′

2i sin(k−q
2
− i0)

gR+y′(q)gR−y(k)

g+2R(q)g+2R(k)
. (3.34)
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This is already an interesting result, but it is still implicit, since it relies on the

knowledge of the Wiener-Hopf decomposition of g(k), which can be far from trivial.

To proceed, let us introduce the new function

φ(k) ≡ e−ε(k), (3.35)

so that

gτ (k) = (φ(k))τ . (3.36)

Writing the Wiener-Hopf decomposition of φ(k) as φ(k) = φ−(k)φ+(k), we have

that, for any τ > 0,

g±τ (k) = (φ±(k))τ , (3.37)

since the power does not change the sign of Fourier modes. Thus

gR+y′(q)gR−y(k)

g+2R(q)g−2R(k)
= (φ(q))y

′
(φ(k))−y

(φ(q))R(φ(k))R

(φ+(q))2R(φ−(k))2R
. (3.38)

Now, since we are dealing with scalar functions, we can employ the logarithm

to formally write the Wiener-Hopf decomposition, as explained in Section 2.2. Note

that here ln(φ(k)) is nothing but −ε(k). To exploit this, it is convenient to divide

the Fourier modes of the dispersion relation according to their sign:

ε(k) =
−1∑

n=−∞

eink[ε]n + [ε]0 +
+∞∑
n=+1

eink[ε]n ≡ ε−(k) + [ε]0 + ε+(k), (3.39)

where, to avoid confusion, we remark that

ε−(k) =
−1∑

n=−∞

eink[ε]n and ε+(k) =
+∞∑
n=+1

eink[ε]n (3.40)

are not the same as the two factors involved in our definition of the Wiener-Hopf

decomposition of ε(k), which would read ε(k) = ε−(k)ε+(k). In this way we have

φ+(k) = e−ε+(k)+ε0 and φ−(k) = e−ε−(k), (3.41)

implying
(φ(q))R(φ(k))R

(φ+(q))2R(φ−(k))2R
= e+R(ε+(q)−ε−(q))e−R(ε+(k)−ε−(k)). (3.42)

One can recognize in the two exponents the Hilbert transform ε̃(k) of the function

ε(k), that, for a periodic function, can be defined precisely as the difference between

the positive and the negative Fourier modes of the function over the imaginary

unit (a discussion of the more traditional definition of the Hilbert transform in
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mathematical literature can be found in [53], while [25, p. 48] contains a nice

summary of Hilbert transform properties). We thus end up with

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R =

∫ +π

−π

dk

2π

∫ +π

−π

dq

2π

e−ikx+iqx′+yε(k)−y′ε(q)+iR(ε̃(q)−ε̃(k))

2i sin(k−q
2
− i0)

. (3.43)

As for the Hilbert transform, there is a simple way to compute it:

the Hilbert transform ε̃(k) of a periodic function with period T

ε(k) =
∑
n∈Z

e
2πi
T
nk[ε]n

=[ε]0 +
+∞∑
n=1

[
cos

(
2π

T
nk

)
([ε]n + [ε]−n) + i sin

(
2π

T
nk

)
([ε]n − [ε]−n)

]
(3.44)

can be computed by dropping the constant term and making the substitu-

tions
cos(nk)→ sin(nk)

sin(kn)→ − cos(kn)
(3.45)

in the Fourier modes. In other words

ε̃(k) =
+∞∑
n=1

[
sin

(
2π

T
nk

)
([ε]n + [ε]−n)− i cos

(
2π

T
nk

)
([ε]n − [ε]−n)

]
.

(3.46)

Indeed, from the definition,

ε+(k)− ε−(k) =
+∞∑
n=1

[
i sin

(
2π

T
nk

)
([ε]n + [ε]−n) + cos

(
2π

T
nk

)
([ε]n − [ε]−n)

]
(3.47)

Summarizing, starting from the result (3.21) obtained via Wick’s theorem and

using semi-infinite Toeplitz matrices’ properties, we managed to get an exact integral

formula for the two point function, in which every term is explicit.

To conclude this section, let us point out the importance of having considered the

domain wall geometry in the computation we just completed. The choice of initial

and final conditions manifests itself in the definition of the matrix and vectors ele-

ments in (3.21), since they are connected to the creation operators that reconstruct

the initial and final states. Basically, we can imagine that there exists a function S(n)

from the set of non-negative integers to Z that reconstructs the particular geometry,

in the sense that the initial and final states are written as |ψ〉 = c†
S(1)− 1

2

c†
S(2)− 1

2

... |0〉.
Then, going through the same application of Wick’s theorem we did in the previ-

ous section, one would end up with Tmn ≡ 〈0|cS(m)− 1
2
c†
S(n)− 1

2

(β + γ + δ)|0〉. In the
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domain wall case S(n) = −n, but for a generic geometry, the function S(n) can

be much more complicated. It can be shown that the generic element Tmn depends

only on the difference S(m)−S(n), but this does not necessarily make T a Toeplitz

matrix. As a consequence, we are not able, in general, to use semi-infinite Toeplitz

matrices’ properties. Moreover, even if T were indeed Toeplitz, the identification of

the symbol g(k) defining the matrix could be not as straightforward as was in the

domain wall geometry. We are going to tackle this issue in Chapter 5.

3.4 Finite-size two-point correlation function

Before looking at the applications of the formula (3.43) we just found, let us

give a finite-size version of the result. This is particularly useful for the numerical

study of the density profile because numerical simulations are done in large but finite

size. The derivation still uses Wick’s theorem but it assumes that the matrix T is

inverted by some linear algebra algorithm for finite-size square matrices, hence we

do not need semi-infinite Toeplitz matrices’ properties here.

In the following, the lattice sites will be indexed from 1 to 2l. They can trivially

be linked to the indexing Z̃ that we used above by shifting the labels of −l− 1
2

and

taking the limit l→ +∞.

Let us start by recalling the discussion about finite-size free-fermions models that

we had in Section 2.1.1. We implied that a Hamiltonian H =
∑2l

i,j=1Aijc
†
icj can be

diagonalized to H =
∑2l

k=1 εkd
†
kdk using an ortho-normalized basis of eigenvectors

{u(k)}k={1,...,2l} of A and defining a new set of fermionic operators

d†k ≡
2l∑
j=1

u
(k)
j c†j, dk ≡

2l∑
j=1

(
u
(k)
j

)∗
cj, k ∈ {1, ..., 2l}. (3.48)

We can also define the unitary matrix of the change of basis S, with elements

Skj ≡ (uk)
∗
j , that allows to write

c†i =
2l∑
q=1

d†qSqi, ci =
2l∑
q=1

S†iqdq. (3.49)

The Wick’s theorem result (3.21) can be easily adapted to this finite-size problem
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as follows:

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R =

l∑
m,n=1

umT
−1
mnvn,

where

um = 〈0|cx′c†m(−(R + y′))|0〉
vn = 〈0|cnc†x(−(R− y))|0〉
Tmn = 〈0|cmc†n(−2R)|0〉

. (3.50)

At this point, we can use the eigenvectors basis and the free fermion property

(2.11) to write the generic quantity 〈0|cmc†n(τ)|0〉 as

〈0|cmc†n(τ)|0〉 =
2l∑

q,p=1

S†mqSpn 〈0|dqe−τ
∑2l
k=1 εkd

†
kdkd†pe

τ
∑2l
k=1 εkd

†
kdk |0〉

=
2l∑
q=1

S†mqSqne−τεq .

(3.51)

This means that T , u and v can be constructed completely from the knowledge of

the eigenvalues and the eigenvectors of the matrix A. Hence, if one has the algo-

rithms to find eigenvalues and eigenvectors and compute the inverse of a matrix,

the knowledge of the matrix A is enough to explicitly evaluate the two-point cor-

relation function everywhere. This is well done by a computer. Taking the system

sizes l >> R >> 1 to minimize finite-size effects, one can assume that numerical

predictions for finite size are not essentially different from analytical ones for infinite

size. All the numerical simulations for the density profile that are presented in this

work are done following this method.

Note that, unlike the infinite-size derivation, this procedure is easily general-

ized to geometries different from domain wall: we have the explicit value of any

〈0|cmc†n(τ)|0〉 and, since we do not need any semi-infinite Toeplitz matrices’ prop-

erty, we do not care if the matrix T is Toeplitz nor, in case it is, which symbol

defines it.
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Chapter 4

The Density Problem

4.1 Asymptotics: the starting point

In this chapter we present some examples where the representation (3.43) for

the two-point correlation function can be employed to find the limit shapes of the

model of fermions we introduced in Section 1.4. Incidentally, we are also going to

tackle the density problem discussed there, namely the characterization of regions

where the density (that we infer from the correlation function) is not between zero

and one.

As discussed in Chapter 1, the limit shape phenomenon occurs in the scaling

limit. In our particular model, the scaling limit consists in taking R, x, y → +∞,

while keeping the ratios x
R

and y
R

fixed (remember the lattice horizontal size is

already considered infinite). We also adapt the expression of the density to the

scaling limit, defining

%(X, Y ) ≡ lim
R→+∞

ρ(XR, Y R) = lim
R→+∞

〈ψ1|c†XR(Y R)cXR(Y R)|ψ1〉R , (4.1)

where X, Y ∈ R, Y ∈ (−R,R) and XR ∈ Z̃.

From (3.43), we have, in the scaling limit,

%(X, Y ) = lim
R→+∞

∫ +π

−π

dk

2π

∫ +π

−π

dq

2π

eiR(ϕα(q,X,Y )−ϕα(k,X,Y ))

2i sin(k−q
2
− i0)

, (4.2)

where

ϕα(q,X, Y ) ≡ qX + iY ε(q) + ε̃(q). (4.3)

This representation of the correlation function is particularly convenient for the

asymptotics: it is an integral formula where the large parameter R is factorized at

the exponent, suitable for a saddle-point method analysis, see e.g. [54, Ch. III] and

[55, Ch. VIII].
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Recall that the dispersion relation for our model is

ε(k) = − cos(k)− α cos(2k). (4.4)

Our analysis will be specialized to this particular dispersion relation, instead of

being general as the discussion in the previous chapter. In the following, we assume

α ≥ 0, since the density profile for α < 0 can be recovered from the former thanks

to the particle-hole symmetry.

Let us introduce the complex variables

z = eik and w = ei(q+i0). (4.5)

After this substitution, we may rewrite (4.2) as

%(X, Y ) = lim
R→+∞

∫
Cz

dz

2πi
√
z

∫
Cw

dw

2πi
√
w

eR(fα(w,X,Y )−fα(z,X,Y ))

z − w
, (4.6)

where Cz is the circumference around the origin of unitary radius, Cw is a circum-

ference around the origin with radius smaller than one and the exponent is defined

as

fα(z,X, Y ) ≡ X ln z− 1

2

(
z− 1

z
+α

(
z2 − 1

z2

))
+
Y

2

(
z+

1

z
+α

(
z2 +

1

z2

))
. (4.7)

To write the explicit form of fα, the Hilbert transform ε̃(k) was evaluated using

(3.46) and the +i0 prescription is now hidden in the definition of the integration

contours. Notice also that, during this limit operation, XR ∈ Z̃; this implies that

no branch points appear in the integrand; indeed

eRX ln z

√
z

= zXR+ 1
2 (4.8)

is an integer power of z. Due to the analiticity properties of the integrand, the exact

form of the integration contours is not essential: deforming the two contours Cz and

Cw to homotopically equivalent curves does not change the value of the integral.

In order to show how the asymptotic behaviour of the density can be extracted

from eq. (4.6), we will start finding the limit shapes for α = 0. This will allow to

understand how the computation works without the complications of the density

problem, that will be tackled in the remainder of the chapter.

4.2 Pure nearest-neighbour hopping

4.2.1 Revisiting the exact formulas

Before turning to the limit shapes, it is worth to show what form the exact

formulas we found in the previous chapter assume for α = 0. For the asymptotics of
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the model, the equations we already have are actually enough, but revisiting some

of them adds some insight on the problem.

Let us start, then, from the result (3.21) obtained from Wick’s theorem, that we

write again for convenience:

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R =

+∞∑
m,n=0

umT
−1
mnvn, (4.9)

where
um = 〈0|cx′c†−m− 1

2

(−(R + y′))|0〉 ,

vn = 〈0|c−n− 1
2
c†x(−(R− y))|0〉 ,

Tmn = 〈0|c−m− 1
2
c†−n− 1

2

(−2R)|0〉 .

(4.10)

Having specialized to ε(k) = − cos(k), we can recognize in the various vectors and

matrix elements some known special functions:

〈0|cmc†n(−τ)|0〉 =

∫ +π

−π

dk

2π

∫ +π

−π

dq

2π
eiqme−ikn 〈0|d(q)e−τH0d(k)†eτH0 |0〉

=

∫ +π

−π

dq

2π
eiq(m−n)eτ cos(q) = Im−n(τ),

(4.11)

where

In(z) =

∫ π

0

dk

π
cos(nk)ez cos(k) =

∫ +π

−π

dk

2π
e±inkez cos(z), (4.12)

with n ∈ Z, is the modified Bessel function [56, p. 376]. Hence everything can

be formulated in terms of modified Bessel functions and the crucial point is now

to compute the inverse of the semi-infinite Toeplitz matrix T whose elements are

defined by modified Bessel function.

Notice also that, for α = 0, the Wiener-Hopf decomposition of the symbol g(k) =

e2R cos(k) defining T can be performed explicitly without much effort: taking the

logarithm, we have

log g(k) = Re+ik +Re−ik ⇒
{

log g+(k) = Re+ik

log g−(k) = Re−ik
⇒

{
g+(k) = eRe+ik

g−(k) = eRe−ik . (4.13)

Now, since we have the explicit expressions of [(g+)−1]m and [(g−)−1]m, we can ex-

plicitly write the elements of T−1 using the semi-infinite Toeplitz matrices’ property

(2.32):

[(g+)−1]m =

∫ +π

−π

dk

2π
e−imke−Reik , [(g−)−1]−m =

∫ +π

−π

dk

2π
eimke−Re−ik

.

(4.14)
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Expanding the complex exponential, one can show that the real part of the functions

under integration is even, while the imaginary part is odd; this implies that the two

integrals are real and in particular

[(g+)−1]m = [(g−)−1]−m. (4.15)

The integral for [(g+)−1]m can be evaluated with the residue theorem:

[(g+)−1]m =

∫ +π

−π

dk

2π
e−imke−Reik =

∮
dz

2πi

e−Rz

zm+1
=


(−R)m

m!
, ∀m ≥ 0

0 , ∀m < 0
. (4.16)

So, thanks to (2.32), we end up with

(T−1)mn =

min(m,n)∑
r=0

(−R)m−r

(m− r)!
(−R)n−r

(n− l)!
(4.17)

and, finally, from (3.21),

〈ψ1|c†x(y)cx′(y
′)|ψ1〉R =

+∞∑
m,n=0

min(m,n)∑
r=0

Ix′+m+ 1
2
(R+y′)In+x+ 1

2
(R−y)

(−R)m+n−2r

(m− r)!(n− r)!
.

(4.18)

This relation is exact and it is interesting because every term in the sum is now

explicit.

This result shows another possible (and sometimes used) approach to this kind of

problems, i.e. writing everything through special functions and use their property to

proceed with the computation. Moreover, it may be useful for numerical simulations

of the correlation function: thanks to the property of Bessel functions

lim
n→+∞

In(τ) = 0, (4.19)

that holds for any finite τ ∈ R+, the infinite sums can be truncated after a few terms.

Even though the approximation gets worse and worse in the limit we are interested

in (R, x, y, x′, y′ → +∞), meaning that we have to keep more and more terms to

get the same precision, this is a good alternative option to the method described in

Section 3.4. We still prefer the method of Section 3.4 because the approach with

Bessel functions holds just for the particular case α = 0, but we presented it for

completeness.

4.2.2 Limit shapes

Let us finally turn to the study of the asymptotic behaviour of the density in the

scaling limit for α > 0, i.e. the evaluation of the limit

%(X, Y ) = lim
R→+∞

∫
Cz

dz

2πi
√
z

∫
Cw

dw

2πi
√
w

eR(f0(w,X,Y )−f0(z,X,Y ))

z − w
. (4.20)
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Recall that Cz and Cw are two simple contours around the origin, Cw is enclosed in

Cz and

f0(z,X, Y ) ≡ X ln z − 1

2

(
z − 1

z

)
+
Y

2

(
z +

1

z

)
. (4.21)

The asymptotic analysis will be based on [13, 57].

Suppose we are able to deform Cz and Cw to two contours C ′z and C ′w respectively

such that the following condition is satisfied almost everywhere1

Re[f0(w,X,R)− f0(z,X, Y )] < 0, ∀̇z ∈ C ′z ∧ ∀̇w ∈ C ′w. (4.22)

Thanks to the lemma ∫
dz g(z) ≤

∫
dz |g(z)|, (4.23)

we have

%(X, Y ) ≤ lim
R→+∞

∫
C′z

dz

2π
√
|z|

∫
C′w

dw

2π
√
|w|

eRRe[f0(w,X,Y )−f0(z,X,Y )]

|z − w|
, (4.24)

which, under (4.22), vanishes. The crucial point in this asymptotic analysis will be

to find such deformation.

In the process of deformation, it is important to consider the singularities of the

function under integration, namely the origin and the pole in z = w. In particular,

the pole in z = w means that, whenever the two integration contours cross, we have

to consider an additional contribution to the integral that can be evaluated using

the residue theorem.

In order to find the points for which condition (4.22) holds, we study the real-

valued function of real variables

u(a, b) ≡ Re[f0(a+ib,X, Y )] =
1

2
X log

(
a2 + b2

)
+

aY

2 (a2 + b2)
+

a

2 (a2 + b2)
+
aY

2
− a

2
,

(4.25)

starting with the description of its stationary points.

From complex analysis, see e.g. [54], we know that, where f0(z) is analytic, the

stationary points of u can be only saddle points and they correspond to stationary

points of f0(z). The equation for the stationary points of f0 is

0 =
∂

∂z
f0(z,X, Y ) = − 1

2z2

(
(1− Y )z2 − 2Xz + 1 + Y

)
. (4.26)

Once we exclude the origin from the possible solutions, the equation above is equiv-

alent to the polynomial equation

(1− Y )z2 − 2Xz + 1 + Y = 0, (4.27)

1By almost everywhere, we mean everywhere except at most a set of null measure. To represent

this in symbols, we use ∀̇.
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with the two solutions

z =
X ±

√
−1 +X2 + Y 2

1− Y
for X2 + Y 2 > 1, (4.28)

z =
X ± i

√
1−X2 − Y 2

1− Y
for X2 + Y 2 ≤ 1. (4.29)

We can identify three regimes, according to the type of saddle points we get in

function of X and Y . Noticing that, when the two saddle points are real, they have

both the same sign of X (recall −1 < Y < 1) we define:

• Regime I the case X2 + Y 2 > 1∧X > 0, where the two saddle points are real

and positive;

• Regime II the case X2 + Y 2 ≤ 1, where the two saddle points are complex

conjugated;

• Regime III the case X2 + Y 2 > 1 ∧ X < 0, where the two saddle points are

real and negative.

Turning back to the problem of deforming the contours, we consider initially

Regime I and only the saddle point

a1 ≡
X +

√
−1 +X2 + Y 2

1− Y
. (4.30)

We define a blue (orange) region in the plane a, b as the region of the plane where

u(a, b) is bigger (smaller) than u(a1, 0). One can show that, for any X and Y in

Regime I, the two regions are qualitatively similar to the ones represented in 4.1a,

i.e. one can prove that the level curves with value u(a1, 0) intersect the negative real

semi-axis just once and the positive real semi-axis only in the saddle point a1.

By transitivity, u is greater in the blue region than in the orange region. This

implies that, if we take a contour C ′z in the blue region and a contour C ′w in the

orange one, the condition (4.22) is satisfied. Since the original contours Cz and Cw
can be deformed to these new contours without intersecting (C ′z and C ′w are still

simple contours around the origin and C ′w is enclosed in C ′z as Cw was enclosed in

Cz), we conclude that the double integral gives zero in the scaling limit. A possible

choice of contours C ′z and C ′w is showed in the figure.

Before going on, let us make a disclaimer about the role of the saddle point in

this deformation. First of all, notice that we are not using the saddle-point method:

our deformed contours need not be the steepest descent paths in the neighbourhood

of the saddle point; in fact, we used the saddle point just as a convenient way to

define the coloured regions. To understand this point, consider ū ∈ R and define

the blue and the orange regions such that u(a, b) > ū and u(a, b) < ū respectively;
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(a) X = 2, Y = 0.5 (Regime I)
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(c) X = −2, Y = 0.5 (Regime III)

Figure 4.1: Plots of u(a, b) ≡ Re[f0(a + ib,X, Y )] for different values of X,Y . The blue points

represent the location of the saddle point chosen as benchmark (in Regime II there are

two saddle points because u has the same value in both of them). The blue (orange)

regions of the plane are those for which u(a, b) is bigger (smaller) than u evaluated

in the benchmark saddle point. The red and the green lines represent the integration

contours C′z and C′w respectively, obtained by the deformation described in the text;

by definition of the coloured regions, all the points (a, b) belonging to the red line

have u(a, b) bigger than all the points belonging to the green line. Every plot of this

kind in the respective regime looks qualitatively the same.
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if it is possible to close two simple contours around the origin C ′z and C ′w such that

the first is enclosed in the blue region and the second is enclosed in the orange one,

then we can draw the same conclusion about the density going to zero in the limit

without having even mentioned the saddle points (the condition (4.22) would still

be satisfied). Taking ū = u(a1, 0) is convenient, but it is not the only possibility:

we used it to show that at least one value ū such the one described above exists and

this is what is important to state that the density goes to zero.

Let us now consider Regime II. We have two saddle points, z1 ≡ a1 + ib1 and

z2 ≡ z∗1 = a1 − ib1, with a1 = X
1−Y and , b1 =

√
1−X2−Y 2

1−Y . Since u(a, b) is even in b, it

takes the same value in the two saddle points. It can be shown that, for any value

of X and Y in this regime, a construction similar to the one reported in Fig.4.1b

holds. As in Regime I, we can draw two contours C ′z and C ′w such that the first is

enclosed in the blue region and the second is enclosed in the orange one, but this

time the deformation requires the two contours to cross each other, so we have to

carefully consider the residue contribution in the deformation.

To evaluate the residue contribution let us consider the integral in w for some

fixed z. During the deformation of the integration contour, if the pole in z is crossed,

a new singularity is included inside the integration contour and to correctly account

for this we should subtract its residue contribution:∫
C1

dw
f(w)

w − z
=

∫
C2

dw
f(w)

w − z
− 2πi Resz

f(w)

w − z
=

∫
C2

dw
f(w)

w − z
− 2πif(z), (4.31)

where C1 is a contour that does not include z, C2 is a contour that includes z and f

is a generic function that is analytic in the neighbourhood of z. Hence, during the

deformation we pick up the residue of the integrand at z = w whenever we push the

z-contour inside the the w-contour, so that

%(X, Y ) = lim
R→+∞

∫
C′z

dz

2πi
√
z

∫
C′w

dw

2πi
√
w

eR(f0(w,X,Y )−f0(z,X,Y ))

z − w
+

∫
γ

dz

2πiz
, (4.32)

where γ is a curve that connects the two saddle points passing on the right of the

origin (and without wrapping around it) because of the singularity.

The double integral now gives zero in the scaling limit because condition (4.22)

is satisfied. The other integral can be evaluated choosing, for instance, γ as the arc

of circumference of radius
√

1−Y
1+Y

centred in the origin connecting the two saddle

points. So in the end

%(X, Y ) =

∫
γ

dz

2πiz
= 2

∫ arccos

(
X√
1−Y 2

)
0

dθ

2π
=

1

π
arccos

(
X√

1− Y 2

)
. (4.33)

Notice that the density is simply related to the argument of the saddle points,

i.e. %(X, Y ) = Arg(z1)/π. There are alternative methods, such as the hydrodynamic
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approach, to obtain the density in the fluctuating region that relies on this fact, see

e.g. [28].

Finally, Regime III can be treated similarly. The typical coloured regions are

shown in Fig. 4.1c. The deformation we are looking for is possible and it essentially

requires to exchange the two contours. Along the line of the computation done for

Regime II one can show that

%(X, Y ) = 2

∫ π

0

dθ

2π
= 1 (4.34)

for any X, Y in Regime III. Notice that this is the maximum value that we can get

from the residue contribution because it is an increasing function of the portion of

the contours that is exchanged in the deformation, so it is maximum when the two

contours are completely exchanged.

Putting everything together, we have the following result for α = 0 and imaginary

time y ∈ (−R,R):

%(X, Y ) =


0, X2 + Y 2 ≥ 1 ∧ X ≥ 0

1

π
arccos

(
X√

1− Y 2

)
, X2 + Y 2 < 1

1, X2 + Y 2 ≥ 1 ∧ X < 0

. (4.35)

This result was already known [17, 58], but we obtained it with a different asymptotic

analysis. The density profile is presented in Fig. 4.2.

Summarizing, we have learned that, when a deformation such as the one de-

scribed above is possible, the contribution from the residues gives the finite part of

ρ, which takes values between zero and one. This will be the guiding idea to tackle

the asymptotic study of the generic-α case too.

One last remark before going on. We saw how different regimes correspond to

different possibilities for the density: in Regime I the density is zero, in the second it

is between zero and one and in the third it is one. As a consequence, the interfaces

between the regimes are nothing less than the arctic curves. Now, the regimes can

be identified simply looking at the discriminant of the polynomial involved in the

saddle-point equation (and the sign of X), since when it is positive we have two real

solutions and when it is negative we have two imaginary solutions: the interfaces

between regimes are just the zeros of the discriminant. We conclude that, if one

is interested only in the arctic curve and not on the precise value of the density in

the fluctuating region, it is sufficient to look at the discriminant. We will see in the

following that the discriminant is not enough to find the arctic curves for generic α.
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Figure 4.2: Density profile for pure NN hopping. (a): Density profile for a finite-size system,

obtained as explained in Section 3.4. Only half of the imaginary time is presented,

since the other half is just a reflection with respect to the axis Y = 0. (b): Density

profile for the time slice Y = −3/5. The blue line is the theoretical prediction, while

the red points are obtained in finite size.
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4.3 Density profile at zero time

We now turn to α 6= 0. Before discussing the full density profile for generic α,

let us focus for simplicity on the time slice Y = 0.

We consider the density expressed as a double integral in real variables, as in

(4.2):

%(X, 0) = lim
R→+∞

∫ +π

−π

dk

2π

∫ +π

−π

dq

2π

eiR(ϕα(q,X,0)−ϕα(k,X,0))

2i sin(k−q
2
− i0)

, (4.36)

with

ϕα(q,X, 0) ≡ qX − sin(q)− α sin(2q). (4.37)

We will not need the properties of complex integration that we used in the previous

section.

The asymptotic of this kind of integrals in the limit R→ +∞ is usually studied

via the stationary-phase approximation, the exponent being purely imaginary; see

e.g. [59]. In our case, we do not need to apply the approximation in details: it is

enough to know that, from the stationary-phase approximation, any integral of the

form ∫
dx eiRh(x)g(x) (4.38)

goes to zero for R → +∞, if g and h are suitably regular functions. Thus, in the

large R limit, the only non-vanishing contribution to the density may rise from the

singularity of the integral, i.e. the points k ' q . So we can compute the density

expanding over p ≡ k−q
2

:

%(X, 0) = lim
R→+∞

∫ +π

−π

dk

2π

∫ +π

−π

dp

2πi

e−2iRp
∂
∂k
ϕα(k,X,0)

p− i0

= lim
R→+∞

∫ +π

−π

dk

2π

∫ +∞

−∞

dp

2πi

e−2iRp
∂
∂k
ϕα(k,X,0)

p− i0

=

∫ +π

−π

dk

2π
Θ

(
− ∂

∂k
ϕα (k,X, 0)

)
,

(4.39)

where we used the integral representation of the Heaviside step function

Θ(x) =

∫ +∞

−∞

dτ

2πi

eiτx

τ − i0
. (4.40)

Now everything boils down to study the sign of ∂ϕα
∂k

:

− ∂ϕα
∂k

> 0 ⇐⇒ 4α cos2(k) + cos(k)−X − 2α > 0, (4.41)
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Figure 4.3: Density profile in our model for null imaginary time. The blue line is the theoretical

prediction, while the red points are obtained from a numerical simulation in finite size

as described in Section 3.4.

which holds for

cos(k) >
−1 +

√
1 + 16Xα + 32α2

8α
∨ cos(k) <

−1−
√

1 + 16Xα + 32α2

8α
.

(4.42)

Clearly, the second equation has solutions only if α > αc ≡ 1
8
. The critical value αc

separates two different behaviours for the density and will play an important role in

the general-imaginary-time case as well. Completing the computation, we get that

the density profile for α < αc is

%(X, 0) =


0 , 1 + 2α ≤ X
1
π

arccos
(
−1+

√
1+32α2+16Xα

8α

)
, −1 + 2α < X < 1 + 2α

1 , X ≤ −1 + 2α

,

(4.43)

while for α > αc is

%(X, 0) =



0 , +1 + 2α ≤ X

1
π

arccos
(
−1+

√
1+32α2+16Xα

8α

)
, −1 + 2α ≤ X < +1 + 2α

1 + 1
π

arccos
(
−1+

√
1+32α2+16Xα

8α

)
− 1

π
arccos

(
−1−

√
1+32α2+16Xα

8α

)
,

− 1+32α2

16α
< X < −1 + 2α

1 , X ≤ −1+32α2

16α

.

(4.44)

Examples of the density profiles in the two cases are reported in Fig. 4.3.

By this simple method we are already able to evaluate the density profile in the

scaling limit for generic α and imaginary time Y = 0. Unfortunately, the argument

we used in this section strongly relied on the exponent being imaginary, so that we
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have to adopt a different strategy for generic imaginary time. Anyway, this result

provides a useful check for the prediction of the general treatment that we shall

present in the next section, since the two methods must give the same results for

Y = 0.

4.4 Full limit shapes

Let us now consider the density profile in our model for a generic imaginary time

Y and α 6= 0. The idea is trying to apply the same argument of contour deformation

that we used for α = 0. We will see that the complication in the saddle-point

equation due to the presence of the NNN hopping term brings a new feature in the

computation. Many of the following results were obtained using computer algebra

systems and their explicit expression is messy more than instructive, so we omitted

several intermediate passages, focusing on the underlying idea. Various figures will

be shown to help visualize the general argument.

Let us recall that

%(X, Y ) = lim
R→+∞

∫
Cz

dz

2πi
√
z

∫
Cw

dw

2πi
√
w

eR(fα(w,X,Y )−fα(z,X,Y ))

z − w
, (4.45)

where Cw is enclosed in Cz and

fα(z,X, Y ) ≡ X ln z−1

2

(
z−1

z
+α

(
z2 − 1

z2

))
+
Y

2

(
z+

1

z
+α

(
z2 +

1

z2

))
. (4.46)

We try to deform the contours of integration to two contours C ′z and C ′w in such

a way that the phase obeys the following condition (analogous to (4.22)) almost

everywhere:

Re[fα(w,X, Y )− fα(z,X, Y )] < 0, ∀̇z ∈ C ′z ∧ ∀̇w ∈ C ′w. (4.47)

If this condition holds, we can claim that the double integral is zero in the scaling

limit and the finite part of the density is given by the potential residue contribution.

What changes with respect to the α = 0 case is that, as we will see, there are

values of X, Y for which such deformation is not possible, i.e. there are some values

X, Y for which we cannot find a combination of contours such that (4.47) holds. We

will see that for these values the double integral diverges.

To investigate the possibility to perform the deformation, we study the real

function of real variables u(a, b) ≡ Re[fα(a + ib,X, Y )]. The saddle-point equation

reads now

0 =
∂

∂z
fα(z,X, Y ) = 2α(1−Y )z4+(1−Y )z3−2Xz2+(1+Y )z+2α(1+Y ); (4.48)
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Figure 4.4: The four possible connected regions identified by the sign of the discriminant of the

saddle-point equation. The plots have X on the horizontal line and Y on the vertical

one and differ in the value of α: α = 1/1000, 1/26, 1/16, 1/4 from left to right.

recall that the origin, being a singularity, is excluded from the possible solutions.

Being a quartic equation with real coefficients, the saddle-point equation is still

exactly solvable, with explicit expressions for its solutions. In general, there are four

different saddle points, so it is clear that the panorama of the solutions will be richer

than for α = 0.

First of all, we can define the various regimes, similarly to what we did for α = 0,

according to the nature of the saddle points we get in function of X and Y , i.e. if

the saddle points are all real or there are one or two couples of complex-conjugated

solutions. This can be done via the discriminant: for a quartic polynomial whose

coefficients are real numbers, the discriminant is zero if two or more roots are equal,

it is negative if there are two real roots and two complex conjugate roots, and it

is positive if the roots are either all real or all non-real. The discriminant’s sign of

the polynomial involved in the saddle-point equation (for fixed α > 0) gives four

different connected regions, as shown in Fig. 4.4. We define:

• Regime I the region of the X, Y plane for which all the saddle points are real

and X ≥ 0 (blue in the figure);

• Regime II the region of the X, Y plane for which two of the saddle points are

real and two are not (yellow in the figure);

• Regime III the region of the X, Y plane for which all the saddle points are

real and X ≤ 0 (red in the figure);

• Regime IV the region of the X, Y plane for which all the saddle points are not

real (green in the figure).

Comparing with the pure NN hopping case, Regime IV has no counterpart, while

the others tend to the respective regimes for α→ 0.

It can be shown that for α > αc ≡ 1/8, Regime III disappears. It is not a

coincidence that it is the same critical value we encountered in the previous section

in the computation of %(X, 0), as we shall see later on.
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Notice that there is no trace of ill-behaviour of the density in the plot of the

discriminant, i.e. we cannot recognize the limit shapes of regions with ill-defined

density in the areas delimited by the discriminant’s sign. This means that the fact

that two saddle points develop (or loose) an imaginary part cannot characterize the

limit shapes we are interested in: unlike what happened for α = 0, finding the zeros

of the discriminant will not be enough to describe the arctic curves. (Anyway, we

will see that the interface between frozen regions and normally-fluctuating ones is

still described by zeros of the discriminant, as can also be heuristically inferred from

Fig. 4.4, where the separation between yellow and blue regions and the rightmost

interface between red and yellow regions give the limit shapes that one observes in

numerical simulations.)

Once all the saddle points are computed, the idea is to deform the integration

contours in the way described for α = 0, so that (4.47) holds. To find such defor-

mation, we choose a saddle point z0 = a0 + ib0, where a0, b0 ∈ R, and shade in blue

(resp. orange) the regions where u(a, b) > u(a0, b0) (resp. u(a, b) < u(a0, b0)) in

the plane a, b. Then let us explore the possibility to draw two contours around the

origin such that one is enclosed in the blue region and the other in the orange one; if

this is possible, even for just one saddle point, then the deformation we are looking

for is possible. Let us examine this possibility regime by regime.

In Regime I and Regime III, nothing essentially changes with respect to the

corresponding regimes of the pure NN hopping case: it is always possible to find a

saddle point for which Fig. 4.1a and Fig. 4.1c hold, giving a value for the density of

zero and one respectively.

Let us consider Regime II. For those points whose X is close (in a sense that will

be specified soon) to Regime I the situation is actually not essentially different from

the pure NN hopping case, as represented in Fig. 4.5a (compare it with Fig. 4.1b).

Hence here the deformation is still possible and gives a finite result from the residue

contribution. But, choosing Y0 such that the line Y = Y0 never enters Regime III,

there are always some values of X in Regime II such that it is impossible to draw a

contour as desired. What changes is the relation between the saddle points: referring

to Fig. 4.5b, we see that Re[fα] of the red saddle point is bigger than Re[fα] of the

blue ones, disabling the possibility to close a contour in the orange region (remember

that we are not allowed to draw contours across the origin, since it is singular). One

can show that we cannot close the contour as desired even considering the other

saddle points as the benchmark to shade the regions in the picture.

The value of the integral for those X, Y that do not allow to close the con-

tour as we want can be approximated using the saddle-point method. The explicit

computation is reported in Appendix A and gives, for large R,

%(X, Y ) ∼ eR(Re[fα(a3,X,Y )−fα(z1,X,Y )]) Im

[
e−iR Im[fα(z1,X,Y )]eiϕ
√
z1(a3 − z1)

]
, (4.49)

65



CHAPTER 4. THE DENSITY PROBLEM

-1.0 -0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5

1.0

a

b

(a) Y = −1/3, X = +0.06. Regime II with

well-defined density.
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(b) Y = −1/3, X = −0.08. Regime II with

ill-defined density.
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(c) Y = −1/3, X = −0.83. Regime IV with

well-defined density.
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(d) Y = −1/3, X = −0.80. Regime IV with

ill-defined density.

Figure 4.5: Representations of u(a, b) ≡ Re[fα(a + ib,X, Y )] in Regime II (top) and Regime IV

(bottom) for α = 1/4. The coloured points represent the saddle points (in Regime II

one point is too far on the left to enter the picture); we drew with the same colour

the couples of complex-conjugated saddle points. The blue (orange) region represents

the region of the plane (a, b) where u(a, b) is bigger (smaller) than u evaluated in the

blue saddle points. In the configurations (a) and (c) we can trace a contour enclosed

in the blue region and a contour enclosed in the orange region; this means that a

deformation that satisfies condition (4.47) exists and the density is between zero and

one. In the configurations (b) and (d) it is not possible to close a contour in the

orange region: this represents the typical situation for points X,Y with an ill-defined

density.
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where a3 is the closest saddle point to the origin on the negative real semi-axis, z1
is the saddle point in the lower half plane and ϕ ∈ (−π/2, π/2) is a phase such that

Arg

[
∂2

∂z2
fα (z,X, Y )

∣∣∣
z=z1

]
+ 2ϕ = 2nπ, (4.50)

for some n ∈ Z. Since Re[fα(a3, X, Y )−fα(z1, X, Y )] > 0, this proves the divergence

of the density in the regions where it is not between zero and one.

Notice also that the frequency of oscillations grows with R because of the factor

Im
[
e−iR Im[fα(z1,X,Y )]eiϕ√

z1(a3−z1)

]
. This implies that ρ violently oscillates between +∞ and−∞,

meaning that the precise limit % does not even exist in these regions. Note that the

oscillating behaviour was expected from the conservation of the particle number that

we noticed in Section 1.4, since, heuristically, we need a −∞ to compensate each

+∞ to keep the number of particles the same we started with.

The same application of the saddle-point method could also be done in the case,

described Fig. 4.5a, where the density is well defined. What changes is the relation

between the saddle points, which is inverted. One would find that the double integral

goes exponentially fast to zero. Of course, this does not imply that the density is

zero because of the residue contribution.

However, these are not all the possibilities that are encountered in Regime II. If

X0, Y0 is a point of Regime II where the density is not well defined, it can happen that

there is a range of X smaller than X0 that, for the same Y0, allows the deformation

we are looking for. In particular, this configuration of the saddle points requires

the two contours to completely exchange, giving a final density equal to one. An

example of this type of configuration is represented in Fig. 4.6. Notice the difference

with the α = 0 case: there, each regime was either frozen or fluctuating; here, in

the same regime, we can have a piece of fluctuating region, a piece of frozen region

and a piece of the region where the density is not well-defined. This characteristic,

clearly due to the richness of the saddle points scenario that one has, also implies

that the discriminant is not enough to characterize the arctic curves: the nature of

the saddle points never changes within Regime II, but there may be different arctic

curves separating three different phases.

Finally, let us consider Regime IV. It can be proved that, for α > 0 and any

fixed Y = Y0, there is always a value of the position X0 such that any point (X, Y0)

belongs to Regime IV if and only if X < X0. For values of X in Regime IV that are

enough on the left (in a sense that will be specified soon), we are not that far from

the configuration that gives a density equal to one in Regime III of the pure NN

hopping case, as reported in Fig. 4.5c (compare it with Fig. 4.1c). For such points,

then, the density equals one. But also here for some value of X, Y it can happen that

the saddle-points morphology changes and the possibility to close the contour as we

want disappears, as shown in Fig. 4.5d. By a similar saddle-point method application
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Figure 4.6: Representation of u(a, b) ≡ Re[fα(a+ ib,X, Y )] for α = 1/15, Y = −2/3, X = −0.9.

For some points of Regime II, a deformation like this is possible, giving a density

equal to one. The blue points represent again a couple of complex conjugated saddle

points, while the red point is a third one (the fourth saddle point is far on the negative

real semi-axis).

to the one we did for Regime II, it can be shown that the density for such points

diverges exponentially and has the same oscillating behaviour of the divergence in

Regime II. So we can see different behaviours for the density in Regime IV as well:

it can be either 1 or ∞ (but, differently from Regime II, not in the interval (0, 1)).

Let us summarize what we found. First of all, the density in the point (X0, Y0)

can be ill-defined only if (X0, Y0) belongs to either Regime II or Regime IV. For

any imaginary time Y0 6= 0, there exists X0 such that (X0, Y0) is one of such point

if and only if the line Y = Y0 does not intersect Regime III. The density for the

point (X0, Y0) is ill-defined if it is impossible to deform the integration contours in

the way described above. The signature of this impossibility is Re[fα] of a certain

saddle point (red in Fig. 4.5) being bigger than Re[fα] of a certain other one (blue in

Fig. 4.5). After having identified the saddle points (recall that they have an explicit

expression), it is thus sufficient to compare Re[fα] between them to characterize the

region where the density is ill-defined. We can test the condition numerically on an

arbitrary dense grid of points in the space X, Y to find our theoretical prediction

of the limit shape for the regions with ill-defined density. A comparison with the

numerical simulation in finite size is shown in Fig. 4.7.

Notice that, since for α > αc Regime III disappears, as soon as α > αc the

regions of ill-definition for the density touch the axis Y = 0. Combined with the

previous observations about αc, we have that, ∀X ∈ [−1 + 2α,+1 + 2α) and Y = 0,

there is a neighbourhood of (X, 0) where the density is well-defined.

To conclude, let us say something more about the points with well-defined den-

sity. For such points, the density is still between zero and one and can be computed

in the same way we obtained the density for α = 0: after the deformation we are

left with a double integral that gives zero in the scaling limit and a simple inte-
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gral accounting for the residue contribution. It is not hard to evaluate the latter,

properly choosing the integration contours; but, given the messy expression of the

saddle points, we think it is not worth it to report the explicit result. Instead, we

just present the plot in Fig. 4.7.

4.5 Pure next-nearest-neighbour hopping limit

In the previous section we saw that, starting with α = 0 and turning on the NNN

hopping term in the Hamiltonian, the regions where the density is not well-defined

grow bigger and bigger. For α > αc, we even found that the only imaginary time for

which density %(X, Y ) is well defined ∀X is Y = 0. In Section 1.4 we have shown

that in the case of pure NNN hopping the density is well-defined everywhere. Since

these two statements seem in contrast, it is interesting to look at what happens in

the limit α→∞.

In order to evaluate the limit α→∞, it is convenient to rescale the Hamiltonian,

so that it does not diverge in the limit, while it still yields Hα at small α. We thus

introduce the Hamiltonian

H ′ =− 1

2
√

1 + α2

∑
x∈Z̃

(
c†xcx+1 + c†x+1cx + αc†xcx+2 + αc†x+2cx

)
'− 1

2

∑
x∈Z̃

(
βc†xcx+1 + βc†x+1cx + c†xcx+2 + c†x+2cx

)
,

(4.51)

with β ≡ 1/α.

The computation goes on as in the last section. All the integration contours

arguments still hold and one can show that the regions with ill-defined density tend

to occupy all the fluctuating region (a comparison between the theoretical prediction

and the numerical simulation is presented in Fig. 4.8). In the limit β → 0 the density

of the model is either one, zero or divergent (no fluctuating region).

On the other hand we know that starting directly with the NNN hopping term

alone in the Hamiltonian, the density would be well-defined everywhere. We con-

clude that the scaling limit and the limit β → 0 do not commute and this solves

the possible ambiguity arising in combining the two previous statements. This issue

with the order of limits reflects in a milder divergence for the scaling limit density

as β goes to zero (it still diverges, though).
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Figure 4.7: Comparison between the theoretical prediction for the density in the scaling limit and

the density obtained numerically in finite size. The values of α are 1/20 (top) and 1/4

(bottom). The purple lines and the shaded purple regions represent the theoretical

prediction for the regions where the density is ill-defined. The red regions represent

the points whose simulated density is not between zero and one; we see that the red

region does not perfectly coincide with the theoretical limit shape, but this is only a

finite size effect (the matching gets better increasing R). The red points in the plots

for fixed imaginary time represent the simulated density, while the blue lines represent

its theoretical prediction.
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Figure 4.8: Comparison between the theoretical prediction for the density in the scaling limit

and the density simulated in finite size for β = 1/4. The colour code is the same of

Fig. 4.7. The error induced by finite size is bigger in this case because the density

diverges more slowly in the scaling limit.
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Chapter 5

Alternative Geometries

5.1 Beyond domain wall geometry

So far, we always restricted ourselves to models in the domain wall geometry. In

fact, when one wants to generate limit shapes imposing inhomogeneous boundary

conditions, domain wall is the simplest geometry that can be considered. On the

other hand, we showed in the previous chapter that, for NN hopping and NNN

hopping in domain wall geometry, the quantity we identified as the density is not

between zero and one everywhere. In Section 1.4, we argued that the possibility

for the density not to be well defined arises from the non-trivial signs coming from

fermions jumping over each other. This observation is consistent with the fact that

regions of ill-defined density are contiguous to regions of well-defined density close

to one.

A natural question arising from this observation is whether, choosing a geometry

that induce a smaller total density, the density problem does not manifest, even

considering both NN hopping and NNN hopping.

In this chapter we investigate our model of fermions (Section 1.4) in slightly

more general geometries. Namely, we impose that the initial and final states refer

both to a lattice configuration that is empty on the right and has constant density

smaller than one on the left. In particular, we focus on having one particle every

p ∈ N \ {0} sites, dubbing |ψ1/p〉 the corresponding boundary states. Clearly, the

case p = 1 gives back the domain wall geometry. We will refer to such geometries as

domain-wall-like geometries An illustration of the boundary states in domain-wall-

like geometry is presented in Fig. 5.1.

To start with, we will generalize the exact formula for the two-point correlation

function (3.43) to domain-wall-like geometries; as in Chapter 3, this derivation will

hold for general dispersion relation. Then we will discuss the scaling limit for our

specific dispersion relation and show that the density problem does not arise in these

geometries.
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Figure 5.1: Representation of the boundary state in a domain-wall-like geometry in the case p = 3.

The computation that follows is similar in spirit to some typical computations

where the problem of limit shapes in general boundary conditions is addressed, such

as [60–63].

Before going on, notice that all the general observation we made in Section 1.4

about the symmetry of the model still hold, except for the particle-hole symme-

try, since that one relied on having symmetric boundary states with respect to the

particle-hole transformation. As a consequence, now the density for α < 0 cannot be

derived simply by the result for α > 0. Nonetheless, for simplicity, we will consider

only the case α > 0.

5.2 Correlation function for domain-wall-like ge-

ometries

We start from the definition of the correlation function (1.16) adapted to the

new geometry:

〈ψ 1
p
|c†x(y)cx′(y

′)|ψ 1
p
〉
R
≡
〈ψ 1

p
|e−H(R−y)c†xe

H(y′−y)cx′e
−H(R+y′)|ψ 1

p
〉

〈ψ 1
p
|e−2HR|ψ 1

p
〉

, (5.1)

where |ψ 1
p
〉 is the state where the lattice is empty on the right of the origin and has

a particle every p sites on the left, starting from the site −1/2 (see Fig. 5.1). With

the notation introduced in Section 2.1,

|ψ 1
p
〉 ≡

(
+∞∏
m=0

c†−pm− 1
2

)
|0〉 . (5.2)

We aim at finding an exact integral formula for this correlation function, following

the same steps we did for the domain wall geometry. As we will see, some new

features arise.

The first step is the application of Wick’s theorem to express the correlation

function as a product of semi-infinite matrices. Nothing essentially new appears at

this level. The only thing worth noticing is that, as far as the size of the system is

finite, one should take the length of the lattice L = 2pl, to end up with l× l matrices

and l-components vectors. Without going again through the full derivation, we just
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report the result:

〈ψ 1
p
|c†x(y)cx′(y

′)|ψ 1
p
〉
R

=
+∞∑
m,n=0

umT
−1
mnvn, (5.3)

where
um = 〈0|cx′c†−pm− 1

2

(−(R + y′))|0〉 ,

vn = 〈0|c−pn− 1
2
c†x(−(R− y))|0〉 ,

Tmn = 〈0|c−pm− 1
2
c†−pn− 1

2

(−2R)|0〉 .

(5.4)

This expression generalizes (3.21) to domain-wall-like geometries.

Now, using the free fermions’ property, one can show that

Tmn = 〈0|c−pm− 1
2
c†−pn− 1

2

(−2R)|0〉 =

∫ +π

−π

dq

2π
e−ipq(m−n)e−2Rε(q). (5.5)

This means that T is still a Toeplitz matrix. However, at variance with the domain

wall case, the symbol defining the matrix cannot be immediately read from the

elements of T , because of the presence of the factor p. So, before being able to

apply the semi-infinite Toeplitz matrices’ properties, we have to properly identify

the symbol related to the matrix T .

To tackle this problem, let us first introduce some notation. Following Chapter

3, let

[gτ ]m ≡
∫ +π

−π

dq

2π
e−ipq(m−n)e−τε(q), gτ (k) ≡

∑
l∈Z

eikl[gτ ]l. (5.6)

We also define the auxiliary function

hτ (q) ≡ e−τε(q), (5.7)

so that we can look at gτ (k) as a function constructed from hτ (k) by keeping only

one every p Fourier modes:

[gτ ]m = [hτ ]pm. (5.8)

We can use the relation between the functions gτ (k) and hτ (k) to find the explicit

expression of gτ (k) we are looking for:

gτ (k) =
∑
n∈Z

[hτ ]pne−ikn

=
∑
n∈Z

∫ +π

−π

dq

2π
hτ (q)e

iqpne−ikn

=

∫ +π

−π
dq hτ (q)

(∑
m∈Z

δ(pq − k − 2πm)

)

=
1

p

∑
m∈Z

∫ +π

−π
dq hτ (q)δ

(
q − 1

p
k − 2π

p
m

)
,

(5.9)
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where we used the representation of the Dirac comb∑
s∈Z

δ(k − 2πs) =
1

2π

∑
n∈Z

e−ikn. (5.10)

Now, of the infinite number of terms in the sum we obtained, only few of them

are different from zero, namely those for which the argument of the delta function

has a zero in the integration interval, i.e. those for which 1
p
k + 2π

p
m ∈ [−π, π); in

other words, the m-th term is non-zero only if

k− ≤ k < k+, with k± ≡ π(−2m± p) (5.11)

(notice that, since p ≥ 1, we always have k+ > k−). On the other hand, we

are interested only in k ∈ [−π,+π), so, in order to have solutions, we need both

conditions to hold. We can distinguish between three cases:

• the whole interval [−π, π) is included in [k−, k+), in which case

k+ ≥ π ∧ k− ≤ −π ⇐⇒ −p− 1

2
≤ m ≤ p− 1

2
; (5.12)

• there are some values of [−π, π) that are left out close to −π, in which case

− π < k− < +π ⇐⇒ −p
2
− 1

2
< m < −p

2
+

1

2
; (5.13)

• there are some values of [−π, π) that are left out close to +π, in which case

− π < k+ < +π ⇐⇒ +
p

2
− 1

2
< m < +

p

2
+

1

2
. (5.14)

Notice that the case in which [k−, k+) is strictly included in [−π, π) cannot arise

because k+−k− = 2πp ≥ 2π. Notice also that the second and third conditions have

solutions only in the case p is even, with m = −p/2 and m = +p/2 respectively.

It is a bit inconvenient that, for even p, there are two values of m that contribute

or not depending on the values of k, but this can be solved as described below. Given

an even p, we consider the two allowed values of m = ±p
2

together:∫ +π

−π
dq hτ (q)

[
δ

(
q − 1

p
k + π

)
+ δ

(
q − 1

p
k − π

)]
=

hτ
(

1
p
k − π

)
, k ∈ [0,+π)

hτ

(
1
p
k + π

)
, k ∈ [−π, 0)

.

(5.15)

Since hτ (k + 2nπ) = hτ (k), ∀k ∈ [−π,+π) ∧ ∀n ∈ Z, we see that we get the right

result considering the m’s that satisfies either the first or the third condition only

and without restrictions on k (beside k ∈ [−π,+π)). Summarizing,

gτ (k) =
1

p

∑
m

hτ

(
k

p
+

2πm

p

)
, (5.16)
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where the sum is over m ∈ Z such that

− p− 1

2
≤ m <

p+ 1

2
. (5.17)

As a final step, to make the expression look nicer, we split the sum into two parts

and we change variable in the first one as m→ m+ p:∑
− p−1

2
≤m< p+1

2

hτ

(
k

p
+

2πm

p

)

=
∑

− p−1
2
≤m≤−1

hτ

(
k

p
+

2πm

p

)
+

∑
0≤m< p+1

2

hτ

(
k

p
+

2πm

p

)

=
∑

p+1
2
≤m≤p−1

hτ

(
k

p
− 2π +

2πm

p

)
+

∑
0≤m< p+1

2

hτ

(
k

p
+

2πm

p

)
; (5.18)

using the periodicity of hτ , gives

gτ (k) =
1

p

p−1∑
m=0

hτ

(
k

p
+

2πm

p

)
. (5.19)

Now that we showed how to find the explicit expression of the symbol, let us put

it aside for a moment and turn to the application of semi-infinite Toeplitz matrices’

properties to compute T−1.

The computation of T−1 starts analogously to the derivation we saw in Chap-

ter 3: one assumes to be able to Wiener-Hopf decompose the symbol as gτ (k) =

g−τ (k)g+τ (k), where the negative Fourier modes of g+τ and the positive Fourier modes

of g−τ are all zero, and uses eq. (2.32) to compute the inverse as

(T−1)mn =
∞∑
r=0

[(g+2R)−1]m−r[(g
−
2R)−1]−n+r. (5.20)

This expression can be processed along the lines of Chapter 3, to be rewritten

as an integral. However, there is something new that must be remarked. Since, due

to the free fermions’ properties, we have

〈0|cmc†n(−τ)|0〉 =

∫ +π

−π

dq

2π
eiq(m−n)e−τε(q), (5.21)

we would like to claim that this time

um = [gR+y′ ]−m−(x′+ 1
2
)/p and vn = [gR−y]n+(x+ 1

2
)/p, (5.22)

rather than being

um = [gR+y′ ]−m−(x′+ 1
2
) and vn = [gR−y]n+x+ 1

2
(5.23)

77



CHAPTER 5. ALTERNATIVE GEOMETRIES

as in the previous case. But it is not true in general: while the j-th Fourier coefficient

of gτ is indeed the pj-th Fourier coefficient of hτ , it is not true that the j-th Fourier

coefficient of hτ is the “j/p-th Fourier coefficient” of gτ if j/p is not an integer (the

very same notion of “j/p-th Fourier coefficient” is not well defined in general). For

this reason we will proceed assuming that x+ 1
2

and x′ + 1
2

are multiples of p. This

will not affect the search for the limit shapes, since in the scaling limit we are not

interested in the microscopic (i.e. site by site) variation of the density, but we look

only to the coarse-grained density %, that is assumed to be continuous.

In the end, the result of Chapter 3 is modified in two important ways: first of

all, the positions x and x′ are divided by p; secondly, the recombination of the terms

related to the geometric sum is not as nice as it was, since

e
1
2p

i(q−k)
+∞∑
r=0

eir(q−k) = e
1
2p

i(q−k)
+∞∑
r=0

eir(q−k+i0+)

= e
1
2p

i(q−k) 1

1− ei(q−k+i0)

= e−
p−1
2p

i(q−k) 1

2i sin(k−q
2
− i0)

.

(5.24)

Finally, we have

〈ψ 1
p
|c†x(y)cx′(y

′)|ψ 1
p
〉
R

=

∫ +π

−π

dkdq

(2π)2
e−ik

x
p
+iq x

′
p e−

p−1
2p

i(q−k)

2i sin(k−q
2
− i0)

gR+y′(q)gR−y(k)

g+2R(q)g−2R(k)
, (5.25)

valid for all x+ 1/2 and x′ + 1/2 that are multiples of p.

This result is exact and holds for any dispersion relation, but its application

is based on the knowledge of the Wiener-Hopf decomposition of the symbol gτ (k),

which, as we have already mentioned, can be far from trivial. In Chapter 3 we man-

aged to compute it thanks to the simplifications caused by the symbol gτ (k) being

an exponential with the imaginary time factorized at the exponent; this made the

symbols in (5.25) combine in a nice way. Now the symbol is not one single expo-

nential with the imaginary time factorized at the exponent but a linear combination

of such exponentials. This is the greatest and essential difference with the domain

wall case. We cannot get further simplification in the correlation function at this

stage and to go on we have to consider the scaling limit and specify something more

about the dispersion relation.
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5.3 Scaling limit in domain-wall-like geometries

5.3.1 General treatment

Let us consider the scaling limit R, x, y, x′, y′ → +∞ with fixed x/R, x′/R, y/R,

y′/R. The first thing we look at to simplify the correlation function (5.25) is which

is the dominant contribution in the symbol gτ (k) expressed by (5.19). To make any

progress, we have to be more specific about the type of dispersion relation of the

model.

The hypothesis we assume is the following:

ε(k/p) < ε(q/p), ∀k ∈
(
−π
p
,
π

p

)
∧ ∀q ∈ [−π, π) \

(
−π
p
,
π

p

)
. (5.26)

Notice that the dispersion relation we are interested in ε(k) = − cos(k)− α cos(2k)

satisfies the requirement ∀α ≥ 0. With this assumption, it is clear that, of all the

terms involved in the sum (5.19) for gτ (k), the one that dominates is the first, i.e.

the one with m = 0, since it has the exponent bigger or equal to the exponent of

any other term ∀k ∈ (−π,+π). Hence, for gτ in the double integral (5.25), we have

lim
τ→+∞

gτ (k) =
hτ (k/p)

p
. (5.27)

As for the Wiener-Hopf decomposition, notice that

g−τ (k)g+τ (k) =
h−τ (k/p)h+τ (k/p)

p
=⇒ g±τ (k) =

h±τ (k/p)
√
p

, (5.28)

so that

〈ψ 1
p
|c†x(y)cx′(y

′)|ψ 1
p
〉
R

=
1

p

∫ +π

−π

dkdq

(2π)2
e−ik

x
p
+iq x

′
p
− p−1

2p
i(q−k)

2i sin(k−q
2
− i0)

hR+y′(q/p)hR−y(k/p)

h+2R(q/p)h−2R(k/p)
.

(5.29)

Now, since hτ (k) is as a single exponent with the imaginary time factorized at the

exponent, we can use the same procedure as in Chapter 3 to simplify the correlation

function. Introducing

ξ(k) = ε(k/p) and φ(k) = e−ξ(k), (5.30)

the situation is not different from the one we already encountered, with the only

differences being:

• an overall factor 1/p;

• x/p and x′/p instead of x and x′;
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• ξ(k) instead of ε(k).

The final expression of the correlation function in the scaling limit is then

〈ψ 1
p
|c†x(y)cx′(y

′)|ψ 1
p
〉
R

=
1

p

∫ +π

−π

dkdq

(2π)2
e−ik

x
p
+iq x

′
p
+yξ(k)−y′ξ(q)+iR(ξ̃(q)−ξ̃(k))

2i sin(k−q
2
− i0)

e−
p−1
2p

i(q−k) ,

(5.31)

where ξ̃(k) is the Hilbert transform of ξ(k). As above, x + 1/2 and x′ + 1/2 have

to be multiples of p, but, as already noticed, this still allows to find the full density

profile in the scaling limit, under the assumption it is continuous.

The Hilbert transform ξ̃(k) is computed via (3.46), i.e. finding first its Fourier

decomposition in the interval [−π, π) and then substituting cos→ sin, sin→ − cos,

leaving aside the constant term:

ξ(k) =[ξ]0 +
+∞∑
n=1

[
cos

(
2π

T
nk

)
([ξ]n + [ξ]−n) + i sin

(
2π

T
nk

)
([ξ]n − [ξ]−n)

]

⇒ ξ̃(k) =
+∞∑
n=1

[
sin

(
2π

T
nk

)
([ξ]n + [ξ]−n)− i cos

(
2π

T
nk

)
([ξ]n − [ξ]−n)

]
,

(5.32)

where

ξn ≡
∫ +π

−π

dk

2π
e−inkξ(k). (5.33)

Notice that, in general, the function ξ(k) is not periodic with period equal to

2π as ε(k) was. It still can be written as a Fourier series in k ∈ [−π,+π), being

integrable in that interval, but the Fourier series will coincide with ξ(k) on that

interval only.1 Notice also that cos(k/p) is not trivially transformed into sin(k/p)

for p ≥ 2 ∈ Z, since the Fourier decomposition of cos(k/p) is not simply cos(k/p)

itself; the same holds for sin(k/p). We are going to tackle the problem of computing

the Hilbert transform in the next section.

5.3.2 Specialization to our dispersion relation

Let us now specialize to the particular case in which the dispersion relation is

ε(k) = − cos(k)− α cos(2k). (5.34)

As already noticed, this dispersion relation satisfies the condition (5.26) under which

eq. (5.25) was derived, so we can use (5.25) to compute the correlation function.

1To be precise, in fact, since the original function gives the same in each period, ξ is still given

by the repetition of the interval [−π, π), so it is still periodic, but it is not differentiable at the

boundaries. However, since we are interested in one period only, this observation will not affect

our discussion.
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Having the explicit dispersion relation allows to compute exactly ξ(k) and its

Hilbert transform. Trivially,

ξ(k) = ε(k/p) = − cos(k/p)− α cos(2k/p). (5.35)

Then, the Hilbert transform can be computed:

ξ̃(k) =


− sin(k)− α sin(2k) , p = 1

− 2
π
arctanh(sin(k/2)) cos(k/2)− α sin(k) , p = 2

− p
π

∫ +∞
0

dx
sin(πp ) sin(k) sinh(x)

cosh(px)+cos(k)
− α p

2π

∫ +∞
0

dx
sin( 2

p
π) sin(k) sinh(x)

cosh( p2x)+cos(k)
, p > 2

;

(5.36)

the calculation is reported in Appendix B.

The remaining asymptotic analysis proceeds as in the previous case: we are

interested in the limit shapes of the density profile in the scaling limit and to obtain

them we will study the asymptotic behaviour of the correlation function (5.31) at

equal times and equal positions.

5.3.3 Density profile for half-filled domain wall geometry

We specialize to the domain-wall-like geometry with p = 2. As in Chapter 4, we

define the complex variables

z = eik and w = ei(q+i0) (5.37)

and the coarse grained density

%(X, Y ) ≡ lim
R→+∞

ρ(XR, Y R) = lim
R→+∞

〈ψ1|c†XR(Y R)cXR(Y R)|ψ1〉R . (5.38)

Then we proceed with the evaluation of % using the representation of the two-point

function (5.31), from which:

%(X, Y ) = lim
R→+∞

1

2

∫
Cz

dz

2πi
√
z

∫
Cw

dw

2πi
√
w

eR(fα(w,X,Y )−fα(z,X,Y ))

z − w
z

1
4w−

1
4 , (5.39)

where, as in domain wall geometry, Cz is the unitary circumference around the origin

and Cw is a circumference around the origin with radius smaller than one. Here the

exponent is defined as

fα(z,X, Y ) ≡ X

2
ln z− 2 arctan(z1/2)

z + 1

π
√
z

+
z + 1

2
√
z

(1 +Y )− α

2z
(z2− 1−Y (z2 + 1)),

(5.40)
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and it is obtained from (5.35) and (5.36) and using

−arctanh(sin(k/2)) cos(k/2) =i arctan

(
z − 1

2
√
z

)
z + 1

2
√
z

=i(arctan(z1/2)− arctan(z−1/2))
z + 1

2
√
z

=i(2 arctan(z1/2)− π/2)
z + 1

2
√
z
.

(5.41)

The saddle-point equation in this case is

π
√
z(2x
√
z + y(z − 1) + z − 1) + 2πα((y − 1)z2 − y − 1)+

− 4z − 4(z − 1)
√
z tan−1

(√
z
)

= 0. (5.42)

Differently from the domain wall case, this equation does not have explicit solu-

tion. Nonetheless, the solutions can be approximated numerically and we find them

to have the following characteristics:

• There are two solutions for any value of X and Y .

• For each Y = Y0, there is a X = X0 such that the two saddle points are real

and positive ∀X ≥ X0 and complex conjugated ∀X < X0.

• For any Y = Y0 and X → −∞ the real part of the two complex conjugated

saddle points is negative and their imaginary part goes to zero.

Some examples of the configuration of the saddle points are presented in Fig. 5.2.

We observe that the essential behaviour of the saddle points is the same as

for α = 0 in domain wall geometry, if one considers just Regime I and Regime II

(compare Fig. 5.2 with Fig. 4.1a and Fig. 4.1b). Also, notice that the pole in z = w

plays the same role as in that case. Since the asymptotic study for α = 0 in domain

wall geometry did not rely on the explicit expression of the saddle points as much

as on their topological configuration, the same arguments hold here. As a result,

% = 0 for those values of X, Y that have real saddle points and 0 < % < 1/2 for

all the other point, approaching asymptotically the value of 1/2 for X → −∞ (the

residue contribution still gives a value between zero and one, but this time we have

an overall factor of 1/2 in front of the density (5.39)).

We emphasize that, for p = 2, the density profile in the scaling limit is wll defined

everywhere, even for the model Hα. The density profile in this case is represented

in Fig. 5.3.
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(a) X = 1, Y = −0.5 (Regime I)
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b
(b) X = 0.6, Y = −0.5 (Regime II)
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(c) X = −2, Y = −0.5 (Regime III)

Figure 5.2: Plots of u(a, b) ≡ Re[f0(a + ib,X, Y )] for various values of X,Y and α = 0.2. The

blue (resp. orange) region represents the region of the plane a, b for which u(a, b) >

u(a0, b0) (resp. u(a, b) < u(a0, b0)), where (a0, b0) is one of the saddle points. The

blue points represent the location of all the two saddle points. For each value of

Y = Y0, there is a value X = X0 such that the two saddle points are real ∀(X,Y0)

with X ≥ X0 and are complex conjugated ∀(X,Y0) with X < X0. For X → −∞, the

imaginary part of the saddle points for (X,Y ) goes to zero.
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0.4

0.5

ρ

(a) Density profile for α = 0 and y = 0. The black line is the theoretical prediction, obtained from

the saddle-point treatment, solving numerically the transcendental equation for the saddle

points and then computing the simple integral coming from the residue contribution (this

integral is still simple as in domain wall geometry because the two phases cancel each other,

precisely as we saw in Chapter 4). The blue and the orange lines are simulation for the density

in finite size, obtained as explained in Section 3.4: the blue one is related to R = 20 and

the orange one is related to R = 68. One can see that the oscillations around the theoretical

prediction get smaller. The same computation could be done for any values of α and y.

������

0

0.2

0.4

0.6

(b) Simulated density profile for α = 1/3 in finite size. It shows all the characteristics we expected.

In particular, the density is always well defined.

Figure 5.3: Density profile in the half-filled domain wall geometry.
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5.3.4 Other geometries and hoppings

It is not difficult to extend our argument to geometries with p ≥ 3. The saddle-

point equation is even more complicated, but one can numerically show that the

behaviour of the saddle points is the same as in the first two regimes of the α = 0

case. This leads to very similar predictions for the density: zero where the two

saddle points are real, 1/p far to the left and between 0 and 1/p where the two

solutions are complex conjugated. So, ∀p ≥ 2, the density in the scaling limit is well

defined everywhere, even considering the full Hamiltonian Hα.

Let us now consider e.g. the case where the Hamiltonian contains a fourth-

neighbours hopping term rather than the NNN hopping; the dispersion relation of

the model is

ε(k) = − cos(k)− α cos(4k). (5.43)

Since

ε(k/p) > ε(k/p+ 2πj/p) ∀k ∈ (−π, π),∀j ∈ {1, ..., p− 1}, (5.44)

the asymptotic analysis can be performed as above. In this case we have

ξ(k) = − cos(k/p)− α cos(4k/p) (5.45)

and

ξ̃(k) =
− sin(k)− α sin(4k), p = 1

− p
π

∫ +∞
0

dx
sin(πp ) sin(k) sinh(x)

cosh(px)+cos(k)
− α sin

(
4
p
k
)
, p ∈ {2, 4}

− p
π

∫ +∞
0

dx
sin(πp ) sin(k) sinh(x)

cosh(px)+cos(k)
− α p

4π

∫ +∞
0

dx
sin( 4

p
π) sin(k) sinh(x)

cosh( p4x)+cos(k)
, p > 4 (even)

.

(5.46)

For odd p we have the complication that (5.44) does not hold for all k, so the

approximation

g(k) ∼ h(k/p) (5.47)

must be revised and g(k) has to be defined piecewise. Anyway, any portion of g(k)

is still an exponential with the imaginary time factorized at the exponent, so the

the argument is still valid. The phenomenology is essentially the same.

Let us focus the case of even p. The case p = 4 is analogous to the case of our

model with NNN hopping in p = 2, since

ξ(k) = − cos(k/4)− α cos(k). (5.48)

Analogous considerations hold for all even p bigger than 4. But consider now p = 2.

Here cos(2k) and sin(2k) are involved in the computation and they play a role
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similar to the one they played in domain wall geometry for the initial dispersion

relation, leading to two additional solutions for the saddle-point equation (it can be

shown numerically). The richness in the saddle points’ panorama leads again to the

impossibility close the integration contours as we want in the complex plane, and

finally to the divergence of the density %(X, Y ) for some values of X and Y (the

density profile is presented in Fig. 5.4).

In conclusion, given a Hamiltonian with a NN hopping and another arbitrary

hopping we see that, increasing p, the number of solutions of the saddle-point equa-

tion decreases, until only two solutions are left, thus leading to a well-defined density.

5.4 Generalization of the domain-wall-like geom-

etry

So far, we considered geometries where the boundary states are chosen such that

the right half of the lattice is empty and the left part is filled with one particle every

p sites. This can be generalized to the case where we consider s particles every p

site (clearly, s < p, with s, p ∈ N). Connecting with the discussion of the previous

section, we expect this choice of geometry to yield an asymptotic density s/p for

x→ −∞. So this allows, in principle, to tune the asymptotic density to any rational

value and, since rationals are dense in reals, close to any real value between zero

and one. We call such geometries general domain-wall-like and their corresponding

boundary states |ψ s
p
〉. In this section we will sketch for completeness how one should

adapt our arguments to treat this kind of geometries.

Let us consider the semi-infinite succession of s fermions followed by p− s holes

on the left half of the lattice, as represented in Fig. 5.5. The occupied sites can be

represented by the introduction of the function

Sps(n) ≡ p

s
(n− nmod s) + nmod s, (5.49)

so that −Sps(n)− 1
2
, with n running over all the non-negative integers, gives all the

occupied sites. Since our interest will still be in the scaling limit, the particular

sequence with which we put s fermions every p sites does not affect the final result.

As always, we look at the two point correlation function.

The application of Wick’s theorem is done without any problem. In the finite-

size intermediate passages, we just take the length of the lattice to be pl. We end

up with the usual expression of the correlation function as a product of semi-infinite
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(a) p = 2, α = 1/10
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(b) p = 4, α = 1/3

Figure 5.4: Density profile for a model with dispersion relation ε(k) = − cos(k) − α cos(4k) in

two different domain-wall-like geometries. This is an illustration of the fact that,

increasing p, the number of solutions in the saddle-point equation diminishes, leading

eventually to the disappearance of the regions where the density is ill-defined.
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Figure 5.5: Representation of the boundary state in a general domain-wall-like geometry in the

case p = 3, s = 2.
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matrices:

〈ψ s
p
|c†x(y)cx′(y

′)|ψ s
p
〉
R

=
+∞∑
m,n=0

umT
−1
mnvn,

um = 〈0|cx′c†−Sps(m)− 1
2

(−(R + y′))|0〉
vn = 〈0|c−Sps(n)− 1

2
c†x(−(R− y))|0〉

Tmn = 〈0|c−Sps(m)− 1
2
c†−Sps(n)− 1

2

(−2R)|0〉
.

(5.50)

At this point we usually apply semi-infinite Toeplitz matrices’ properties to com-

pute the inverse of T . But here comes the essential complication: T is not Toeplitz

anymore. As a matter of fact,

Tmn = 〈0|c−Sps(m)− 1
2
c†−Sps(n)− 1

2

(−2R)|0〉 =

∫ +π

−π

dq

2π
e−iq(Sps(m)−Sps(n))e−2Rε(q), (5.51)

where Sps(m)−Sps(n) 6= Sps(m−n), because of the presence of the ‘mod’ function.

Nonetheless, T still has a certain structure: it is block-Toeplitz. Indeed let us

decompose T in blocks of dimension s × s and identify the block whose top left

element is TAs,Bs with TAB:

T =

T00 T01 ...

T10 T11 ...

... ... ...

 , TAs+m,sB+n = (TAB)m,n ∀m,n ∈ {0, ..., s− 1}.

(5.52)

The elements of one generic block are

(TAB)mn = 〈0|c−pA−m− 1
2
c†−pB−n− 1

2

(−2R)|0〉 =

∫ +π

−π

dq

2π
e−iqp(A−B)e−iq(m−n)e−2Rε(q),

(5.53)

which tells us that each block is a Toeplitz matrix (this time it is finite) and that

the dependence of the block-indices is

TAB = [G]A−B, (5.54)

where [G] is some matrix function. Similarly to what we did with semi-infinite

Toeplitz matrices, we can construct the symbol defining the semi-infinite block-

Toeplitz matrix T as

G(k) =
∑
A∈Z

eikl[G]A. (5.55)

The difference with the previous case is that the symbol is now a matrix.

There are tools to treat this kind of matrix that have been used to approach

similar problems, see e.g. [63]. Even though the mathematical treatment is more

complicated, we expect that the final result will have an analogous expression to the

ones we saw so far. Such conjecture is strongly supported by numerics.
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5.4. GENERALIZATION OF THE DOMAIN-WALL-LIKE GEOMETRY

Let us conclude mentioning that a possible way to circumvent the computation

with block-Toeplitz matrices could be using the insight we gained from our previous

treatment for geometries with s = 1 to construct an ansatz to plug in alternative

methods to find the density. To give an example, a possible alternative method is

the hydrodynamic approach, based on [64]; see for instance [28]. We will not delve

here into this possibility, but we mention it as a possible direction for future work.
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Chapter 6

Final Remarks and Conclusion

Let us summarize what has been done. We started with a certain model of

fermionic particles on a one dimensional lattice that can hop to nearest-neighbour

and next-nearest-neighbour sites. We considered its imaginary-time evolution in

the so-called domain wall geometry, which consists in taking the lattice in the initial

and final states completely empty on the right and fully occupied on the left of the

origin.

We focused on the two-point correlation function of the model, whose defini-

tion was inspired by a mapping between a dimer model and a fermionic model.

In particular, our interest was mainly in the density and its limit shapes. After

having introduced the main tools to be used during the computation, we worked

out an exact integral formula for the correlation function of our model, providing

an alternative derivation for a known result. Such integral formula was then used

to characterize the limit shapes for the density profile. In particular, we observed

that, when the nearest-neighbour and the next-nearest-neighbour hoppings are both

present, there are values of position and imaginary time for which the density is not

between zero and one, but is singular. A prescription to find the exact limit shapes

was given.

Starting from the observation that the density is well defined everywhere in the

absence of the next-nearest-neighbours hopping, we gave an argument according to

which the ill-definition of the density originates from the non-trivial minus signs

introduced in the expectation value of the density by fermions jumping over each

other. As a by-product, this implies that geometries with a higher total fermion

density are more susceptible to exhibit an ill-defined density. To investigate such

statement, we considered what we called domain-wall-like geometries, where the

lattice in the initial and final states is empty on the right and has one fermion

every p sites on the left. As a first step, we found an exact integral formula for

the correlation function. Because of some complications due to the geometry, the

integral formula is explicit only in the scaling limit. After that, we characterized
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the limit shapes of the density profile and found that the density is well defined

everywhere in space and imaginary time (at least in the scaling limit), consistently

with our observation that lower densities are less problematic. This showed that

our dispersion relation, even though not defining a totally positive model, allows for

some boundary conditions that, at least in the scaling limit, enhance the probabilistic

interpretation. Beside understanding the sign and divergence problem of the density,

some new results concerning limit shapes were found throughout our work.

We concluded our discussion noticing how the whole argument could be gen-

eralized to other types of hoppings, highlighting that the conclusion is the same:

reducing the total density reduces the number of solutions in the saddle-point equa-

tion for the asymptotic study, until there are only two of them, thus leading to a

well-defined density.

The interest in non-positive models is not new to physics. For instance, a similar

situation is often encountered when simulating quantum systems, using Monte Carlo

methods, e.g. [65, 66]: to simulate (quantum) fermionic systems one basically uses

the quantum-statistical mechanics correspondence and may end up with a statistical

mechanics model where the Boltzmann weights are not all non-negative; this is

often dubbed “sign problem”, as the lack of positivity of the statistical mechanical

interpretations makes numerical simulations extremely slow to converge. Statistical

models with non positive weights are also interesting in their own rights, in particular

they may appear when trying to reformulate a non-local but positive model as a local

one, e.g. [67].

Some open questions remain, like the extension of our argument to what we called

general domain-wall-like geometries, i.e. geometries where the lattice in the bound-

ary states is empty on the right and is populated with an arbitrary constant density

on the left. We mentioned that numeric simulations show similar phenomenology

to the previous case and the problem could be tackled by alternative methods, such

as hydrodynamics.

Another possible development could be to include interactions in the model. Es-

sentially, the transfer matrix formalism allows to see all the models exhibiting the

limit shape phenomenon as quantum systems evolving in imaginary time. The ma-

jority of solved models maps to free fermions, but there is interest in the interacting

case. Needless to say, interactions makes everything much harder, but some results

are available. For recent developments see [68–72] and references therein. One of

the complications is that Wick’s theorem cannot be used as simply; however, we

strongly suspect that, considering interactions in our model, the phenomenology

would stay the same, though it would be much harder to describe the arctic curves

analitically.

Finally, fluctuations have been excluded from our treatment, but they are actu-

ally there, on top of the density profile we described. Even specializing to the axis
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y = 0, where we know our model always allows for a statistical interpretation, the

study of the fluctuations is a point of interest in mathematical literature. For α = 0,

the interfaces are known to follow the Tracy-Widom distribution [73] and it can be

shown to be the case also for almost all values of α [28]. On the other hand, when

α = αc the fluctuations appear to decay slower with distance than the Tracy-Widom

distribution. This aspect requires a deeper understanding and possibly an analytic

description.

93



CHAPTER 6. FINAL REMARKS AND CONCLUSION

94



Appendix A

Saddle-Point Method for the

Density

In this appendix, we evaluate the asymptotic behaviour of the density (4.6) in

the scaling limit via the saddle-point method.

We will focus on the case α > 0 in which the values of X and Y in the expression

of the density are such that the saddle-points configuration is qualitatively similar

to the one represented in Fig. 4.5b (in the language of Chapter 4, we consider those

values X, Y in Regime II for which the deformation described in that chapter is not

possible). Both the density formula and the figure are reported here for convenience:

-1.0 -0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5

1.0

a

b

%(X, Y ) = lim
R→+∞

∫
Cz

dz

2πi
√
z

∫
Cw

dw

2πi
√
w

eR(fα(w,X,Y )−fα(z,X,Y ))

z − w
, (A.1)

where everything is defined as in Chapter 4.

The three saddle points that are shown in the figure are all we need (the fourth

one will not play any role); let us call z1 and z2 = z∗1 the blue ones, where z1 is the

saddle point in the lower half of the complex plane, and a3 the red one.
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Let us start with the application of the saddle-point method to the integral in

w: we can deform the contour so that it goes through the red saddle point via

the steepest descent path, in such a way that the red point is seen as a maximum.

Intuitively (but it could also be shown analytically), this path will go towards the

not-shaded region, since we know that u is smaller there than in the surroundings.

Then we close the contour passing through the blue saddle points. In the end, the

leading behaviour is given by the surroundings of the point where the function is

maximum, i.e. a3.

We expand the exponent around the saddle point as

fα(z,X, Y ) ' fα(a3, X, Y ) +
1

2
f ′′α(a3, X, Y )s2e2iϕ ≡ fα(a3, X, Y ) +

1

2
rs2ei(θ+2ϕ),

(A.2)

where

z − a3 ≡ seiϕ, s, r ∈ R+, θ, ϕ ∈ [−π, π) (A.3)

and the derivative is taken with respect to the first argument.

Since we have{
Re[fα(z,X, Y )] ' Re[fα(a3, X, Y )] + 1

2
rs2 cos(θ + 2ϕ)

Im[fα(z,X, Y )] ' Im[fα(a3, X, Y )] + 1
2
rs2 sin(θ + 2ϕ)

, (A.4)

the steepest descent path (the one for which a3 corresponds to the most peaked

maximum possible for the real part) is the one satisfying

θ + 2ϕ = π + 2nπ, (A.5)

with n ∈ Z. Notice also that in this direction the imaginary part is constant, so

that we disregard the possibility of destructive oscillations.

In first approximation, the steepest descent path in the neighbourhood of a3 is

a vertical line (travelled up to down) because of the symmetry of our function, so

we can parametrize it taking ϕ = −π/2 and s ∈ [−ε, ε], with ε > 0 infinitesimally

small.

From the saddle-point method we have∫
Cw

dw

2πi
√
w

eRfα(w,X,Y )

z − w
'
∫ +ε

−ε

ds

2π
√
a3

eR(fα(a3,X,Y )− 1
2
rs2.)

a3 − z

' eRfα(a3,X,Y )

∫ +∞

−∞

ds

2π
√
a3

e−
1
2
Rrs2

a3 − z

= eRfα(a3,X,Y ) 1√
2πa3rR

1

a3 − z
.

(A.6)

Notice how, stopping at the leading order, the two initial integrals decouple,

leaving a single Gaussian integral that is easily evaluated. The sub-leading orders

would not have this characteristic and the computation would be harder.
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An analogous thing can be done with the integral in z, but, because of the minus

sign at the exponent, this time the steepest descent path wants to pass through the

saddle points in such a way that they act as minima of Re[fα]. As above, we expand

the exponent around the saddle point as

fα(z,X, Y ) ' fα(a3, X, Y ) +
1

2
f ′′α(a3, X, Y )s2e2iϕ ≡ fα(a3, X, Y ) +

1

2
rs2ei(θ+2ϕ),

(A.7)

with

z − a3 ≡ seiϕ, s, r ∈ R+, θ, ϕ ∈ [−π, π). (A.8)

But this time we will choose the contour deformation in such a way that

θ + 2ϕ = 2nπ, (A.9)

with n ∈ Z. (Again, the imaginary part is constant in the neighbourhood of the

saddle points, ruling out destructive contributions from the oscillating part.)

In the end, the contour deformation will pass through z1 and z2 always staying

within the shaded region; let us parametrize it as z1 + eiϕs, with s ∈ [−ε, ε], ε > 0

and ϕ ∈ (−π/2, π/2), in the neighbourhood of z1. The parametrization for z2 is just

the reflection, i.e. z∗1 + e−iϕs for s ∈ [−ε, ε], travelled reversely.

From the saddle-point method:∫
Cz

dz

2πi
√
z

e−Rfα(z,X,Y )

a3 − z

' e+iϕ

∫ +∞

−∞

ds

2πi
√
z1

e−R(fα(z1,X,Y )+ 1
2
rs2)

a3 − z1
− e−iϕ

∫ +∞

−∞

ds

2πi
√
z∗1

e−R(fα(z∗1 ,X,Y )+ 1
2
rs2)

a3 − z∗1

= e+iϕ

∫ +∞

−∞

ds

2πi
√
z1

e−R(fα(z1,X,Y )+ 1
2
rs2)

a3 − z1
− e−iϕ

∫ +∞

−∞

ds

2πi
√
z∗1

e−R(f∗α(z1,X,Y )+ 1
2
rs2)

a3 − z∗1

= Im

[
eiϕ
∫ +∞

−∞

ds

π
√
z1

e−R(fα(z1,X,Y )+ 1
2
rs2)

a3 − z1

]
,

(A.10)

where we used that f is holomorphic almost everywhere. The Gaussian integral can

be finally computed, giving∫
Cz

dz

2πi
√
z

e−Rfα(z,X,Y )

a3 − z
'
√

2e−RRe[fα(z1,X,Y )]

√
πRr

Im

[
e−iR Im[fα(z1,X,Y )]eiϕ
√
z1(a3 − z1)

]
. (A.11)

Notice that the potential residue contributions that are picked up are not im-

portant because they are finite, while the double integral diverges. That is why we

ignored the pole during the deformations.
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Since, as can be easily checked, eRfα(a1,X,Y )
√
a3

is real, in the limit R→ +∞

%(X, Y ) ∼
eR(Re[fα(a3,X,Y )−fα(z1,X,Y )]) Im

[
e−iR Im[fα(z1,X,Y )]eiϕ√

z1(a3−z1)

]
πR
√
a3|f ′′α(a3, X, Y )| |f ′′α(z1, X, Y )|

, (A.12)

where the derivatives are evaluated with respect to the first argument and ϕ ∈
(−π/2, π/2) is a phase that

Arg [f ′′α (z1, X, Y )] + 2ϕ = 2nπ, (A.13)

for some n ∈ Z.

The result that has been obtained is clearly real and, since Re[fα(a3, X, Y ) −
fα(z1, X, Y )] > 0, diverges exponentially to ∞, oscillating between −∞ and +∞
infinitely fast (actually, one could also think about tuning the oscillating factor to

get a finite value, but, still, the integral is divergent almost everywhere).

This proves the divergence of the density in the regions where it is not between

zero and one.
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Appendix B

Hilbert Transform

In this appendix we evaluate the Hilbert transform of the function (5.35), i.e.

ξ(k) = − cos(k/p)− α cos(2k/p). (B.1)

We resort to eq. (3.46), so let us start by computing the Fourier coefficients of

ξ(k). Since the function is even, we have [ξ]m = [ξ]−m and

[ξ]m + [ξ]−m
2

=−
∫ π

−π

dk

2π

(
cos

(
k

p

)
+ α cos

(
2k

p

))
cos(km)

=−
∫ π

0

dk

2π

(
cos

(
1 + pm

p
k

)
+ cos

(
1− pm

p
k

))
− α

∫ π

0

dk

2π

(
cos

(
1 + (p/2)m

(p/2)
k

)
cos

(
1− (p/2)m

(p/2)
k

))
.

(B.2)

Now, ∫ π

0

dk

2π
cos (γk) =


δγ,0
2
, if γ ∈ Z

sin(γk)

2πγ
, otherwise

. (B.3)

Hence we have

[ξ]m + [ξ]−m
2

=


−1

2
δm,1 − 1

2
δm,−1 − α

2
δm,2 − α

2
δm,−2 , p = 1

2 cos(mπ)
π(4m2−1) −

α
2
δm,1 − α

2
δm,−1 , p = 2

p cos(mπ) sin(π/p)
π(p2m2−1) + α (p/2) cos(mπ) sin(π/(p/2))

π((p/2)2m2−1) , p > 2

. (B.4)

Being ξ(k) even, the Hilbert transform is just

ξ̃(k) = 2
+∞∑
m=1

sin(kn)
[ξ]m + [ξ]−m

2
. (B.5)
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Now, since we are not able to give a closed form of the sum for general p, we rewrite

it as an integral, which is usually more manageable, using

+∞∑
m=1

sin(km) cos(mπ)

p2m2 − 1
= −sin(k)

2

∫ +∞

0

dx
sinh(x)

cosh(px) + cos(k)
, for p > 1. (B.6)

(The other sum, for p > 2, is analogously approached.)

Proof. First of all, we decompose the denominator using the identity

1

p2n2 − 1
=

1

2

(
1

np− 1
− 1

np+ 1

)
. (B.7)

After that, for each term, we use the integral representation

1

γ
=

∫ +∞

0

dx e−γx, (B.8)

valid ∀γ > 0. Then, using also the complex representation for the sine

(−1)m sin(mk) =
eim(k+π) − e−im(k+π)

2i
, (B.9)

we have

+∞∑
m=1

cos(mπ) sin(mk)

p2m2 − 1
=

∫ +∞

0

dx
+∞∑
m=1

e−(pm−1)x − e−(pm+1)x

2

eim(k+π) − e−im(k+π)

2i

=

∫ +∞

0

dx sinh(x)
+∞∑
m=1

e−pmx
eim(k+π) − e−im(k+π)

2i

=
1

2i

∫ +∞

0

dx sinh(x)

(
1

1− ei(k+π)−px
− 1

1− e−i(k+π)−px

)
=

1

2

∫ +∞

0

dx sinh(x)
− sin(k)

cosh(px) + cos(k)
,

(B.10)

thus proving (B.6).

Finally, we solve explicitly the integral via computer algebra systems for p = 2,

while we leave the integral expression implicit for p ≥ 3. From∫ +∞

0

dx
sinh(x)

cosh(2x) + cos(k)

= csc

(
k

2

)
arctanh

(
tan

(
k

4

))
=

1

2
csc

(
k

2

)
arctanh

(
sin

(
k

2

))
, (B.11)
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we have

ξ̃(k) =


− sin(k)− α sin(2k) , p = 1

− 2
π
arctanh(sin(k/2)) cos(k/2)− α sin(k) , p = 2

− p
π

∫ +∞
0

dx
sin(πp ) sin(k) sinh(x)

cosh(px)+cos(k)
− α p

2π

∫ +∞
0

dx
sin( 2

p
π) sin(k) sinh(x)

cosh( p2x)+cos(k)
, p > 2

.

(B.12)
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[17] N. Allegra, J. Dubail, J.-M. Stéphan, and J. Viti. Inhomogeneous Field Theory

inside the Arctic Circle. Journal of Statistical Mechanics: Theory and Experi-

ment, 2016(5):053108, May 2016.

[18] D. M. Bressoud. Proofs and Confirmations: The Story of the Alternating Sign

Matrix Conjecture. Spectrum Series. Cambridge University Press, Cambridge ;

New York, 1999.

[19] F. Colomo and A. G. Pronko. The Limit Shape of Large Alternating Sign

Matrices. SIAM Journal on Discrete Mathematics, 24(4):1558–1571, January

2010.

[20] R. J. Baxter. Exactly Solved Models in Statistical Mechanics. Dover Publica-

tions, Mineola, N.Y, dover ed edition, 2007. OCLC: ocn154799434.

[21] K. Palamarchuk and N. Reshetikhin. The 6-Vertex Model with Fixed Boundary

Conditions. arXiv:1010.5011, October 2010.

[22] F. Colomo and A. G. Pronko. The Arctic Curve of the Domain-Wall Six-Vertex

Model. Journal of Statistical Physics, 138(4-5):662–700, March 2010.

[23] A. Borodin, I. Corwin, and V. Gorin. Stochastic Six-Vertex Model. Duke Math-

ematical Journal, 165(3):563–624, February 2016.

[24] B. Debin, P. Di Francesco, and E. Guitter. Arctic Curves of the Twenty-Vertex

Model with Domain Wall Boundaries. Journal of Statistical Physics, 179(1):33–

89, April 2020.

104



BIBLIOGRAPHY

[25] D. Romik. The Surprising Mathematics of Longest Increasing Subsequences.

Institute of Mathematical Statistics Textbooks. Cambridge University Press,

New York, 2015.

[26] C. Schensted. Longest Increasing and Decreasing Subsequences. Canadian Jour-

nal of Mathematics, 13:179–191, 1961.

[27] J. Baik, P. Deift, and K. Johansson. On the Distribution of the

Length of the Longest Increasing Subsequence of Random Permutations.

arXiv:math/9810105, March 1999.
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[51] G. Szegö. On Certain Hermitian Forms Associated with the Fourier Series of

a Positive Function. In R. Askey, editor, Gabor Szegö: Collected Papers, pages
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