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Abstract

The relationship between the canonical observables and the Pohlmeyer-
Rehren infinite-dimensional tensor algebra of invariant charges is anal-
ysed for the open Nambu string.

In two recent papers[1,2] the classical Nambu string has been studied by means of the
many-time approach. The original pair of first-class constraints, which are only in weak
involution, have been locally replaced by two sets of strictly abelian (i.e. in involution
under Poisson brackets) constraints by multiplying them by suitable functions suggested
by the light-cone coordinates. In this way it is possible to describe nearly all the constraint
manifold using two overlapping charts, one with P+ 6= 0, the other with P− 6= 0. The
remaining part of such a manifold contains only longitudinal modes. In each chart the
Hamilton-Dirac equations of motion are replaced by many-time functional Hamilton equa-
tions with the abelian constraints as Hamiltonians. These equations have been solved in
an arbitrary gauge. Moreover a complete set of canonical observables, à la Dirac, has ben
found for each chart; this set reduce to the DDF oscillators[3] in the orthonormal gauge.
This allows the construction of a canonical transformation, in each chart, from the original
symplectic basis xµ(σ), Pµ(σ), to a new one which is made of: 1) the abelian constraints
and the conjugated gauge variables; 2) all the previous transverse canonical observables; 3)
the three independent components (in four space-time dimension) of the total momentum
and the three conjugated variables for the center of mass (which are Dirac observables too).
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Therefore the set of all canonical observables plays the game of the 2d − 1 independent
constants of motion of a completely integrable d-dimensional system.

The draw-back of this construction is the loss of manifest covariance. In a series of
papers[4–8] Pohlmeyer and Rehren have introduced a set of invariant tensor charges for
the closed Nambu string, which are Dirac observables, i.e. have zero Poisson brackets with
the original constraints. Their form for the open string is

Zµ1,...,µn

[n]± = Rµ1,...,µn

[n]± + (cyclic permutations), (1)

with

Rµ1,...,µn

[n]± =
∫ π

−π

dσ1A
µ1
± (σ1)

∫ σ1

−π

dσ2A
µ2
± (σ2) ...

∫ σn−1

−π

dσnAµn

± (σn), (2)

where Aµ
±(σ) is given by

Aµ
±(σ) = Pµ(σ)±Nx′µ(σ). (3)

The original constraints are χ±(σ) = A2
±(σ) ≈ 0 and the canonical Poisson brackets are

{xµ(σ), P ν(σ′)} = −ηµν∆+(σ, σ′);

(for every notation see references [1,2]).
On the other hand, in the chart with P+ 6= 0, where the abelian constraints are

χ̃±(σ) = χ±(σ)/2A+
±(σ) (here A+

±(σ) is the light-cone component 1√
2
[A0
±(σ) + A3

±(σ)] of
Aµ
±(σ) ), the canonical observables of reference [2] are

Aµ
n =

1√
4πN

∫ π

−π

dσAµ
±(σ) exp

[
± iπn

P+
B+
±(σ)

]
, n = ±1,±2, ...,

µ = +, 1, 2,−;
(4)

where Bµ
±(σ) is the following special primitive of Aµ

±(σ):

Bµ
±(σ) =

∫ σ

0

dσ′Pµ(σ′)±Nxµ(σ). (5)

For the Aµ
n’s we have the following properties:

A+
n =0 for n 6= 0, (6)

Aµ
0 =

Pµ

√
πN

. (7)

Moreover,

A−n =
√

πN

P+
(L̃n + Ũ−n ), (8)
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with

L̃n(τ) =
P+

2πN

∫ π

−π

dσχ̃±(σ) exp
[
± iπn

P+
B+
±(σ)

]
=

1
2

+∞∑
m=−∞

Aµ
m ·An−m,µ =

=
P+

π2

+∞∑
m=−∞

Lm(τ)
∫ π

−π

dσ
e∓imσ

2A+
±(σ)

exp
[
± iπn

P+
B+
±(σ)

]
≈ 0, (9)

Ũ−n (τ) =
P+

2πN

∫ π

−π

dσ
~A2
±(σ)

2A+
±(σ)

exp
[
± iπn

P+
B+
±(σ)

]
=

1
2

+∞∑
m=−∞

~Am · ~An−m. (9′)

Here the Lm’s are the standard Virasoro generators. P+
√

πN
A−n , L̃n, Ũ−n , all satisfy the

Virasoro algebra.
The canonical observables we were speaking about are the transverse oscillators ~An,

n 6= 0, which satisfy the following algebra:{
Aa

n, Ab
m

}
= −inδabδn,−m, a, b = 1, 2; (10){

Aa
n, χ̃±(σ)

}
=
{
Aa

n, χ±(σ)
}

= 0. (11)

The A−n ’s allows to rebuild the generalized Virasoro generators L̃n, and have the following
algebra with the constraints:{

A−n , χ̃±(σ)
}
≈ 0,

{
A−n , χ±(σ)

}
= 0. (12)

The new basis is spanned by

1) Y −(σ) =
1

2N
[χ̃−(σ)− χ̃+(σ)] , P+(σ) =

∫ σ

0
dσ′P+(σ′)− σ

π
P+;

x+(σ), Π−(σ) =
1
2

[χ̃−(σ) + χ̃+(σ)] ;

2) Aa
n;

and, for the center of mass :
3) P+, ~P ; Z−, ~Z;

(Z+ = 0),

where

Za =Xa − 1
2P+

∫ π

−π

dσ
[
x+(σ)P a(σ)− ya(σ)P+(σ)

]
= −J+a

P+

Z− =X− ∓ 1
4NP+

∫ π

−π

dσ
(
P+(σ)±Nx+(σ)

) ~A2
±(σ)

A+
±(σ)

=

=− J+−

P+
± πNX+

2P+2

∞∑
m=−∞

Aµ
m ·A−m,µ+

+
i

4πP+

∑
n 6=0

∞∑
m=−∞

Aµ
m ·An−m,µ

n

∫ π

−π

dσ exp
[
∓ iπn

P+
B+
±(σ)

]
.

(13)
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P+, ~P , Z−, ~Z, ~An are those constant of motion which describe the independent
Cauchy data of the string. Jµν , with µ, ν = +, 1, 2,−, are the generators of the Lorentz
group:

Jµν =
1
2

∫ π

−π

dσ [xµ(σ)P ν(σ)− xν(σ)Pµ(σ)] .

We have also the following relations between the abelian constraints and the Virasoro
generators:

Y −(σ) =− π

2P+2

∞∑
n,m=−∞

Aµ
m ·An−m,µ

(
A+

+(σ) exp
[
− inπ

P+
B+

+(σ)
]
−A+

−(σ) exp
[
inπ

P+
B+
−(σ)

])
,

Π−(σ) =
1
π

Ξ−tot +
∂

∂σ
Ξ−rel(σ),

Ξ−tot =
1
2

∫ π

−π

dσΠ−(σ) =
πN

2P+

∞∑
n=−∞

Aµ
n ·A−n,µ, (14)

Ξ−rel(σ) =
∫ σ

0

dσ̄Π−(σ̄)− σ

π
Ξ−tot =

πN

2P+2

∞∑
n=−∞

Aµ
n ·A−n,µP+(σ)+

+
iN

4P+

∑
n 6=0

∞∑
m=−∞

Aµ
m ·An−m,µ

n

(
exp

[
− inπ

P+
B+

+(σ)
]
− exp

[
inπ

P+
B+
−(σ)

])
,

and the following expression for the Lorentz generators which do not appear in equations
(13):

J12 =εab

ZaP b +
i

2

∑
n 6=0

Aa
nAb

−n

n

 ,

J−a =Z−P a − ZaP− − i

2
√

πn

∑
n 6=0

Aa
nA−−n

n
− πN

2P+2 X+P a
∞∑

n=−∞
Aµ

n ·A−n,µ− (15)

− iP a

4πP+

∑
n 6=0

∞∑
m=−∞

Aµ
m ·An−m,µ

n

∫ π

−π

dσ exp
[
− inπ

P+
B+

+(σ)
]

.

From equations (14) the mass spectrum is given by

P− =
1

2P+

(
~P 2 + 2πN

∞∑
n=1

~An · ~A−n

)
+ Ξ−tot. (16)

In terms of the new basis we have

~A±(σ) = A+
±(σ)

 ~P

P+
+
√

Nπ

P+

∑
n 6=0

~An exp
[
∓ iπn

P+
B+
±(σ)

] ;

A+
±(σ) = P+(σ)±Nx′+(σ); (17)

A−±(σ) = A+
±(σ)

(
Nπ

P+2

∞∑
n=−∞

(L̃n +
1
2

∞∑
m=−∞

~Am · ~An−m) exp
[
∓ iπn

P+
B+
±(σ)

])
.
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We see from equations (13), (15) that the new canonical basis Y −(σ), P+(σ), x+(σ),
Π−(σ), Aa

n, P+, Z−, ~P , ~Z, adapted to the abelian constraints χ̃±(σ), is not adapted to
the generators of the Lorentz group, which is a symmetry group of the system. This is
due to the fact that the abelian constraints are only weakly Lorentz invariant, so that
the Lorentz generators are only weak observables and not strong ones. Therefore it is not
possible to rebuild Jµν using only the strong observables Aa

n, P+, Z−, ~P , ~Z, plus the
Virasoro constraints (either L̃n =

∑∞
m=−∞Aµ

m · An−m,µ or A−n or else Y −(σ), Π−(σ)).
From equations (13),(15) we see that J+− and J−a depends on the gauge variables X+

and
∫ π

−π
dσ exp

[
∓ iπn

P+ B+
±(σ)

]
, which are conjugated to the constraints Ξ−tot and

L̂n =
i

8πNn

∫ π

−π

dσχ±(σ) exp
[
∓ iπn

P+
B+
±(σ)

]
=

=
i

4nP+2

∞∑
m=−∞

L̃m

∫ π

−π

dσA+
±

2
(σ) exp

[
∓ iπ

P+
(n + m)B+

±(σ)
]

,

where the following representation of the original constraints has been used

χ±(σ) = 2A+
±(σ)χ̃±(σ) =

2πn

P+2 A+
±

2(σ)
∞∑

n=−∞
L̃n exp

[
∓ iπn

P+
B+
±(σ)

]
. (18)

The previous discussion shows that the use of light-cone coordinates for the abelian-
ization of the constraints is not natural from the point of view of the Poincaré group.
A different abelianization, in which the abelian constraints are Poincaré scalars, is now
under investigation: in this last case all the Poincarè generators turn out to be strong
observables.

Another consequence of the previous discussion is that the set of generators Jµν , Aµ
n

(where Aµ
0 contains Pµ and A−n the generalized Virasoro generators) does not close even

if we consider their enveloping algebra: indeed, beside the Lorentz algebra we get{
Aa

n, Ab
m

}
=− inδabδn+m,{

Aa
n, A−m

}
=− i

√
πN

P+
nAa

n+m,

{
A−n , A−m

}
=i

√
πN

P+
(m− n)A−n+m, (19)

{Pµ, Aν
m} =

iπNn

P+
ηµ+Aν

n,

{Jµν , Aα
n} =− ηµαAν

n + ηναAµ
n +

iπNn

P+
(ην+Zµ − ηµ+Zν)Aα

n+

+
n
√

πN

P+

∞∑
n=−∞

∑
m6=0

Aα
n−m

m
(ηµ+Aν

m − ην+Aµ
m).

The last line of equations (19), together with equations (13), shows that the gauge
variables X+,

∫ π

−π
dσ exp[− iπn

P+ B+
+(σ)] appears in the algebra. Moreover the first line of
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equation (19) shows the central charge associated to the symplectic algebra:to avoid it one
must consider only Aµ

n with n ≥ 0, but in this way the Virasoro generators L̃n with n < 0
are lost. However this is just the pattern followed in the canonical quantization.

Coming back to the invariant tensor charges Zµ1,...µn

[n]± , it turns out that they can be

expressed in terms of the Dirac observables Pµ, ~An, and of the Virasoro generators L̃n ≈ 0.
In particular the Zµ1,...µn

[n]± ’s with only transverse and/or “+” indices turn out to be

functions only of P+, ~P , ~An. For the sake of simplicity from now on we shall restrict
ourselves to the Zµ1,...µn

[n]+ ’s. For an arbitrary Zµ1,...µn

[n]+ we have:

Zµ1,...µn

[n]+ =
(

N

π

)n
2 +∞∑

k1...kn=−∞

Aµ1
k1

... Aµn

kn
· C̄[n]

k1,...,kn
, (20)

where
C̄[n]

k1,...,kn
= C[n]

k1,...,kn
+ (cyclic permutations), (21)

and C[n]
k1,...,kn

are defined through the following recurrence formulas:

C[n]
k1,...,kn

=
1

−ikn
C[n−1]

k1,...,kn−1+kn
+

1
ikn

exp
[
− iπkn

P+
B+

+(−π)
]
C[n−1]

k1,...,kn−1
. (22)

Let us outline that the gauge dependent phases exp[− iπkn

P+ B+
+(−π)] disappear when we

perform the sum over the cyclic permutations of the indices in C[n]
k1,...,kn

in order to obtain

the C̄[n]
k1,...,kn

, and thus do not appear either in equation (20). When the index kn takes
the value kn = 0, the recurrence relation (22) is to be read:

C[n]
k1,...,kn

= − π

P+
B+

+(−π) ·C[n−1]
k1,...,kn−1

. (23)

In particular, we have C[1]
k = 2π · δk,0.

Viceversa, equations (2) and (4) imply:

Aµ
k =

1√
4πN

exp
[
− ikπ

P+
B+

+(−π)
] +∞∑

n=0

(
ikπ

P+

)n

Rµ,+,...,+
[n+1]+ , (24)

L̃k =
P+

√
πN

A−k − Ũ−k =

=
P+

2πN
exp

[
− ikπ

P+
B+

+(−π)
] +∞∑

n=0

(
ikπ

P+

)n

R−,+,...,+
[n+1]+ − (25)

−1
2

∞∑
l=−∞

1
4πN

exp
[
− ikπ

P+
B+

+(−π)
] +∞∑

n,m=0

(
ilπ

P+

)n(
i(k − l)π

P+

)m ∑
a=1,2

Ra,+,...,+
[n+1]+ Ra,+,...,+

[m+1]+ .
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Pohlmeyer and Rehren lay stress on the fact that for the d-dimensional string, instead
of the Poincaré algebra SO(1, d− 1)]P d (where P d is the Lie algebra of translation), one
should consider the dynamical Poisson algebra g = SO(1, d − 1) ] [P d ⊕ h+ ⊕ h−]. Here
the information about the center of mass coordinates Z−, ~Z is contained in the Lorentz
algebra SO(1, d−1), while h± are the linear span of the invariant tensor charges (1) and of
all the derived charges which may be extracted from them: indeed all these charges close
over themselves under: 1) tensor product followed by cyclic symmetrization; 2) Poisson
brackets (see [5] for the structure constants, which depend on Pµ). Therefore the lack of
closure of equations (19) for the set of observables can be cured in a way which does not
depend on the abelianization chosen for the constraints, just by going to this algebra g.

The idea of Pohlmeyer and Rehren is to try to quantize the constraints χ±(σ) and to
interpret the resulting loop equations as an infinite collection of representations conditions
for the infinite-dimensional algebras h± (see [6] for an approach to the problem through
the WKB approximation). Therefore one would like to quantize only the algebra g and
not a canonical basis, in the spirit of Isham’s ideas[9]. A similar situation is present in the
loop representation[10] of general relativity studied with the Ashtekar approach[11]. For
the closed string the Zµ1,...µn

[n]± ’s are also topological invariant of loops on a given stationary
minimal surface of the Nambu action [7]. Therefore these infinite-dimensional algebras
contain a description of the global topological properties of the system. Indeed reference
[7] shows, at least for the euclidean version of the closed Nambu string complexified to a
Riemann surface, that there is a set of Z’s for each homology class of loops on the surface
(in particular all the Z’s vanish for the zero homology class). The knowledge of the sets
of Z’s for all the homology class allows to rebuild the Riemann surface (patching various
charts) modulo the motion of the center of mass. In the Minkowsky case (with signature
(+,−) for the metric in (τ, σ) ) not all these loops are at constant τ : equations (1),(2) give
the Zµ1,...µn

[n]± ’s for a loop at τ =constant; otherwise the integrand has to be changed and
the Hamilton equations must be used in evaluating the Zµ1,...µn

[n]± ’s.
In this respect let us remark that our canonical transformation and its consequences

for the invariant charges are not restricted to the solutions of the equations of motion.
On the other side, the canonical observables ~An describing the localized independent

degrees of freedom are not contained in the set of the Zµ1,...µn

[n]± ’s (just as the graviton
degrees of freedom are not contained in the loops invariants of the loop representation of
general relativity). This is due to the fact that their functional form depends of the chosen
abelianization of the original constraints, i.e. of the local (in phase-space) identification
of the gauge variables. In order to define a localized measurement in a reparametrization
invariant theory, in presence of other local invariances, the previous procedure may not be
bypassed. So the problem arises of how to recover a set of canonical variables (and the
associated choice of the gauge variables) from the infinite-dimensional algebra, without
performing the abelianization of the constraints. While this problem is still unsolved for
the loop representation of general relativity, Pohlmeyer and Rehren have given an answer
for the case of the closed Nambu string [7]. First of all one has to make a choice of the
gauge variables, which is hidden in their choice of isothermal coordinates (this is equivalent
to the orthonormal gauge) on a Riemann surface. This allows the identification of a set
of Fourier coefficients which become our ~An in an arbitrary gauge. Then one notices that
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all the Zµ1,...µn

[n]± ’s with n ≥ 3 indices, (n − k of which are “+”, and k are transverse one
(i1, i2, ..., ik)), depend only of Ai1

n1
, Ai2

n2
, ..., Aik

nk
, with n1 + n2 + ... + nk = 0. These

monomials can be extracted with a limiting procedure for n −→ ∞ from such Z’s. If we
set Ai

k = (Ai
−k)∗ = |Ai

k|eiϕi
k (ϕi

−k = −ϕi
k), the equations with k = 2 and i1 = i2 allows

the determination of all the |Ai
k|’s. Then all the other equations with k ≥ 2 can now be

solved in the unknown variables ϕi1
n1

+ ϕi2
n2

+ ... + ϕik

nk=−(n1+n2+...+nk−1)
. Therefore one

can evaluate all the phases as soon as one of them (e.g. ϕ1
1) is given. As the Zµ1,...µn

[n]± ’s
with all transverse indices depend on the same monomials, this phase is not determined
by the Zµ1,...µn

[n]± ’s. On the other hand equation (25) shows that this phase is an invariant
non-local charge which has to be given together with the choice of the gauge variables. All
this procedure may be performed again for the Zµ1,...µn

[n]± ’s with “−” indices instead of the
transverse ones to evaluate all the A−n ’s (still with an arbitrary over-all phase).

Instead of the limiting procedure one can also extract the previous momomials in the
following way (see reference [8]): since we have (for i, j = 1, 2,−)

Zij+...+
[n]+ = (

√
4πN)n(2P+)n−2

 Ai
0A

j
0

(n− 1)!
−
∑
k 6=0

Ai
kAj

−k

n−1∑
l=2

1
(l − 1)!

(
1

−2iπk

)n−l
 , (26)

let’s define, according to Pohlmeyer and Rehren [5], the reduced Z’s:

[l]Z
ij
[n] =

∑
k 6=0

Ai
kAj

−k

(
1
k

)n−l

, l = 2, 3, ..., n. (27)

We may now define in the disc ζ < 1, the function:

F ij(ζ) = −
+∞∑

n=l+1

ζn−l−1
[l]Z

ij
[n] =

∑
k 6=0

Ai
kAj

−k

1
ζ − k

. (28)

Now, extending F ij(ζ) to the whole complex plane we get a meromorphic function; by
taking its residue in ζ = m, for i = j, we eventually obtain:

1
2iπ

·Res(ζ=m) F ii(ζ) =Ai
mAi

−m = ‖Ai
m‖2 =

=

∥∥∥∥∥exp
[
− iπm

P+
B+

+(−π)
]
·

+∞∑
n=0

(
iπm

P+

)n

Ri,+,...,+
[n+1]+

∥∥∥∥∥
2

; (29)

showing again the impossibility to reconstruct the over-all phase from the Zµ1,...µn

[n]± ’s.
In a similar way equation (26) with i = j = − determine the moduli of A−k and

their relative phases. These phases can be expressed in terms of one of them (for instance
ϕ−1 ). Then equation (26) with i = 1, 2, j = −, allow to express this phase in terms of the
undetermined phase of the ~Ak (ϕ1

1). Then, by using equation (8) we can express the L̃n’s
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in terms of the Z’s and ϕ1
1. Therefore the original constraints, which are determined by

the generalized Virasoro generators L̃n and by the choice of the gauge variables (i.e. the
B+
±(σ) ), as shown in equation (18), may be expressed in terms of the Z’s, the phase ϕ1

1

and the gauge variables B+
±(σ).

In reference [8] on the Casimirs elements of the algebra of the invariant charges, the
orthonormal gauge Virasoro constraints Ln (L̃n in an arbitrary gauge) are replaced with an
infinite set of reparametrization invariant and abelain constraints S±a − 1 ≈ 0. The latter
are infinite superpositions of the Ln (or L̃n) which have vanishing Poisson brackets among
themselves and carry just as much information as the Virasoro generators. Therefore the
constraints can be rebuild from the invariant charges once the choice of the gauge variables
as been made and the previously quoted undetermined phase is given. With our canonical
transformation an equivalent set of abelian constraints can be obtained by replacing the
variables Y −(σ) ≈ 0, Π−(σ) ≈ 0 with their Fourier coefficients; their conjugate variables
are the Fourier coefficients of P+(σ), x+(σ). Their quantization, as known, can be done
without any anomaly appearing, but the Lorentz algebra is realized only in the critical
dimension.

The conclusion is that till now there is no well defined general procedure for extracting
all the localized degrees of freedom from the infinite-dimensional algebras describing the
global topological properties of the system.

Viceversa, once one has succeeded in finding the canonical observables through the
abelianization procedure and the many-time approach, the algebra can be decomposed
over this set of observables.

The Pohlmeyer-Rehren algebra of invariant charges seems to be the counterpart for the
string of the dynamical SU(3) algebra for the armonic oscillators. The SU(3) generators
are build as bilinears in the oscillators ai, a∗i, which are not Cauchy data. However,
instead of the oscillators one can use the symplectic basis of the action variables Ii = a∗iai

and the Cauchy data ϕi of the angle variables φi = arccos ai+a∗i

2
√

Ii
: the constants of the

motion Ii, ϕi, with {Ii, ϕj} = δij , are the counterpart of the string observables ~An,
~A∗n = ~A−n. The Ii’s form the Cartan subalgebra of the U(3) algebra obtained from
SU(3) adding to it the Hamiltonian (i.e.

∑
i Ii); however the Poisson brackets of the

ϕi’s with the U(3) generators close on the enveloping algebra of the ai’s. In order to
understand better the similarities with the Nambu string one should study these problems
for the relativistic harmonic oscillators using the approach of reference[12]Let us stress that
in the Chern-Simons-Witten[13] topological quantum field theory one has no canonical
observables (there is no localized physical degree of freedom): only global topological
invariants connected to the link invariants are present. This suggests that in the loop
representation of general relativity there is a superposition of this situation and of localized
degrees of freedom (the graviton), as in the string.

As a final remark let us check that the non-local invariant charges Aµ
n (and therefore

the Z’s, too) are generators of Noether transformations under which the Nambu action is
quasi-invariant, so that they all are Lagrangian constants of the motion.

The Nambu Lagangian is

L(σ, τ) = −N
√
−h(σ, τ) ≡ −Pµ(σ)ẋµ(σ), (30)
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with the definitions

Pµ(σ) = − ∂L
∂ẋµ(σ)

, Πµ(σ) = − ∂L
∂x′µ(σ)

,

−h = (ẋ · x′)2 − ẋ2x′
2
. (31)

The second equality in equation (30) follows from the fact that L is homogeneous of first
degree in the velocities. Since for a Noether transformations δxµ(σ) generated by a phase
space constant of motion Ḡ we have

δx(σ) =
{
x(σ), Ḡ

}
|P=− ∂L

∂ẋ
,

δ
∂L

∂ẋ(σ)
=− δP (σ)|P=− ∂L

∂ẋ
= −

{
P (σ), Ḡ

}
|P=− ∂L

∂ẋ
,

(32)

we may write the variation of the Lagrangian in the following form

δL(σ) =δxµ(σ)Lµ(σ)− ∂τ [Pµ(σ)δxµ(σ)]− ∂σ[Πµ(σ)δxµ(σ)] ≡
≡− δ[Pµ(σ)ẋµ(σ)] = −ẋµ(σ)δPµ(σ) + Ṗµ(σ)δxµ(σ)− ∂τ [Pµ(σ)δxµ(σ)],

(33)

where Lµ(σ) = Ṗµ(σ) + Π′µ(σ) .= 0 are the Euler-Lagrange equations of motion ( .= means
“equal when evaluated on the extremals of the variational principle”).

For Ḡ = Aµ
n one gets

δν
nxµ(σ) = {xµ(σ), Aν

n} = −ηµν 1√
4πN

(
exp

[
inπ

P+
B+

+(σ)
]

+ exp
[
− inπ

P+
B+
−(σ)

])
−

− iπn

P+
ηµ+

[ 1√
4πN

(∫ σ

π

dσ′ −
∫ −σ

−π

dσ′
)

Aν
+(σ′) exp

[
inπ

P+
B+

+(σ′)
]]

+

+
iπn

P+2

1√
4πN

ηµ+

∫ π

−π

dσ′B+
+(σ′)Aν

+(σ′) exp
[
inπ

P+
B+

+(σ′)
]

; (34′)

δν
nPµ(σ) = {Pµ(σ), Aν

n} =

=− in
√

πN

2P+
ηµν

(
A+

+(σ) exp
[
inπ

P+
B+

+(σ)
]

+ A+
−(σ) exp

[
− inπ

P+
B+
−(σ)

])
+

+
in
√

πN

2P+
ηµ+

(
Aν

+(σ) exp
[
inπ

P+
B+

+(σ)
]

+ Aν
−(σ) exp

[
− inπ

P+
B+
−(σ)

])
.(34′′)

To get this result we need

{
xµ(σ), B+

±(σ̃)
}

=
∫ σ̃

0

dσ′
{
xµ(σ), P+(σ′)

}
=− ηµ+ [θ(σ̃ − σ) + θ(σ̃ + σ)− 1] ,

for σ, σ̃ ∈ (−π, π).
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Then we get

δν
nL(σ, τ) =− ∂

∂τ

[
Pµ(σ)δν

nxµ(σ) + Jν
τ,n(σ, τ)

]
− ∂

∂σ

[
Πµ(σ)δν

nxµ(σ) + Jν
σ,n(σ, τ)

]
+

+ Ṗ+ in

P+

{
Aν

n +
1

P+
√

4πN

∫ π

−π

dσ̃B+
+(σ̃)Aν

+(σ̃) exp
[
inπ

P+
B+

+(σ̃)
]
− (35)

− π

P+

1√
4πN

(
B+

+(σ)Aν
+(σ) exp

[
inπ

P+
B+

+(σ)
]
−B+

−(σ)Aν
−(σ) exp

[
− inπ

P+
B+
−(σ)

])}
,

where Ṗ+=
∫ π

0
dσL+(σ) .= 0 from the conservation of the total momentum and

Jν
τ,n(σ, τ) =

1√
4πN

(
Aν

+(σ) exp
[
inπ

P+
B+

+(σ)
]

+ Aν
−(σ) exp

[
− inπ

P+
B+
−(σ)

])
,

Jν
σ,n(σ, τ) =−Πµ(σ)δν

nxµ(σ)− Nẋν(σ)√
4πN

(
exp

[
inπ

P+
B+

+(σ)
]
− exp

[
− inπ

P+
B+
−(σ)

])
− (36)

− iπn

P+
Ṗ+(σ)

(
Aν

n +
1√

4πN

(∫ π

−π

dσ̄B+
+(σ̄)−

∫ π

σ

dσ̄ −
∫ π

−σ

dσ̄

)
Aν

+(σ̄) exp
[
inπ

P+
B+

+(σ̄)
])

,

Equations (33) and (35) imply

∂

∂τ
Jν

τ,n(σ, τ) +
∂

∂σ
Jν

σ,n(σ, τ) .= 0.

Moreover, since Jν
σ,n(π, τ) − Jν

σ,n(−π, τ) = 0 due to the boundary conditions [1], we
have

Ȧν
n =

∫ π

−π

dσ
∂

∂τ
Jν

τ,n
.= 0, (37)

as expected.
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