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Abstract

The two-point time and temperature dependent correlation functions for the

XX0 one-dimensional model in constant magnetic field are represented (in the ther-

modynamical limit) as Fredholm determinants of linear integral operators.
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Recently essential developments have been made in the theory of quantum correlation

functions showing that correlators of quantum exactly solvable models satisfy classical

completely integrable differential equations [1]-[6] (this program for the example of the

nonrelativistic Bose gas is now fulfilled and presented in Ref. [7]). An important prelim-

inary step to obtain these differential equations is to represent correlation functions as

the determinants of Fredholm linear integral operators. For the nonrelativistic Bose gas

these representations were given in papers [8, 9] in the time independent case and in [10]

in the time-dependent case.

In this paper the determinant representations of this kind are obtained for the dis-

tance, time and temperature dependent two-point correlation functions of the XX0

Heisenberg chain. In order to write differential equations and to calculate their asymp-

totics our plan further is to construct and solve a matrix Riemann problem, similarly to

the case of the nonrelativistic Bose gas [5], [11]-[13] (see also Ref. [7]).

We would like to mention that the autocorrelator (time-dependent correlator of local

spins at the same site of the lattice) was presented in paper [2] as a Fredholm determinant

and this representation (different from the one obtained below in this particular case)

was used in [6] to produce the differential equations for the autocorrelator.

The XX0 chain is the isotropic case of the XY model [14], being also the free fermions

point for the XXZ chain. The Hamiltonian describing the nearest neighbour interaction of

local 1/2 spins situated at the sites of the one-dimensional periodical lattice in transverse

magnetic field, with M (even) sites, is given as

H(h) = −
M∑

m=1

[σ(m)
x σ(m+1)

x + σ(m)
y σ(m+1)

y + hσ(m)
z ] . (1)

Pauli matrices are normalized as (σ(m)
s )2 = 1 (s = x, y, z). Moreover, we define σ

(m)
± ≡

1
2
[σ(m)

x ± iσ(m)
y ]. Due to the similarity transformation,

H(h) → H(−h) = UH(h)U−1; U =
M∏

m=1

σ(m)
x ,

it is sufficient to consider only nonnegative magnetic fields, h ≥ 0. Furthermore the

choice of the minus sign at the r.h.s. of eq. (1) is just a matter of convenience due to the
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property

H(h) → −H(−h) = V H(h)V −1; V =
M/2∏
m=1

σ(2m)
z .

The ferromagnetic state | 0〉 ≡ ⊗M
m=1 |↑〉m (all spins up) is an eigenstate of the Hamilto-

nian. All the other eigenstates can be obtained by filling this ferromagnetic state with

N quasiparticles (N = 1, 2, ..., M) with different quasimomenta pa, −π < pa ≤ π,

(a = 1, ..., N) and energies ε(pa),

ε(p) ≡ ε(p, h) = −4 cos p+ 2h . (2)

Periodical boundary conditions imply:

exp[iMpa] = (−1)N+1, a = 1, ..., N (3)

for the allowed values of quasimomenta. All the momenta of the quasiparticles of a given

eigenstate should be different, so that, e.g., for N = M one gets only one eigenstate

| 0′〉M = ⊗M
m=1 |↓〉m which is the ferromagnetic state with all spins down.

The model in the thermodynamical limit (M → ∞, h fixed) is the most interest-

ing. For h ≥ hc ≡ 2, ferromagnetic state | 0〉 (all spins up) is the ground state of the

Hamiltonian. For 0 ≤ h < hc, the ground state | Ω〉 is obtained by filling the ferromag-

netic state with quasiparticles possessing all the allowed momenta inside the Fermi zone,

−kF ≤ p ≤ kF , where

kF = arccos(h/2) ; h ≤ hc = 2 , (4)

is the Fermi momentum. At non zero temperature T > 0, the density of quasiparticles

in the momentum space is given as ϑ(p)/2π, where ϑ(p) ≡ ϑ(p, h, T ) is the Fermi weight:

ϑ(p) =
1

1 + exp[ε(p)/T ]
, (5)

Temperature and time dependent correlators of local spins σ(m)
s (t)≡ exp[iHt] σ(m)

s exp[−iHt],

σ(m)
s ≡ σ(m)

s (0), s = x, y, z, are defined as usual:

g(T )
sr (m, t) ≡ 〈σ(n2)

s (t2)σ
(n1)
r (t1)〉T

=
Sp

{
exp[−H/T ]σ(n2)

s (t2)σ
(n1)
r (t1)

}
Sp {exp[−H/T ]}

. (6)
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Due to translation invariance the correlators depend only on the differences,

m ≡ n2 − n1 , t = t2 − t1 . (7)

At zero temperature, only the ground state contributes to the traces in (6),

g(0)
sr (m, t) ≡ 〈Ω | σ(n2)

s (t2)σ
(n1)
r (t1) | Ω〉

〈Ω | Ω〉
(T = 0) . (8)

In Ref. [14] the time-independent correlators of XY model were calculated at h = 0.

The simple answer for the correlator of the third spin components was given; for the XX0

chain it reduces essentially to the square modulus of the Fourier transform of the Fermi

weight. The result was generalized to the case of nonzero transverse magnetic field and

to the time-dependent correlator [15]; in our notation, for the XX0 model the last result

may be written

g(T )
zz (m, t) = 〈σz〉2T −

1

π2

∣∣∣∣∫ π

−π
dp exp[imp+ 4it cos p]ϑ(p)

∣∣∣∣2 +

+
1

π2

(∫ π

−π
dp exp[−imp− 4it cos p]ϑ(p)

) (∫ π

−π
dq exp[imq + 4it cos q]

)
(9)

(for t = 0, the last term in the r.h.s. is equal to zero). Here

〈σz〉T
≡ 〈σ(n)

z (t)〉
T

= 1− 1

π

∫ π

−π
dp ϑ(p) ,

〈σz〉0 = 1− 2kF

π
, (10)

is the magnetization (not depending neither on n nor on t due to translation invariance).

Properties of these quantities were considered in much detail [14]-[17]. Real systems for

experimental comparisons were found [18].

Correlators of the other local spin components are indeed more complicated. In Ref.

[14] these correlators (for the XY model at t = 0, h = 0) were represented as the

determinants of m × m matrices (m is the distance between correlating spins). This

representation was investigated in detail in [16] (see also [19]). In Ref. [20] the structure

of the time-dependent correlators was investigated on the basis of an extension of the

thermodynamic Wick theorem. In Ref. [2], representation of the autocorrelator (m = 0,

t 6= 0) in the transverse Ising chain in critical magnetic field (closely related to correlators
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in the XX0 chain at h=0) were given as Fredholm determinants of a linear integral

operator.

In this paper the correlators (see (6), (7) for the notations)

g
(T )
+ (m, t) = 〈σ(n2)

+ (t2)σ
(n1)
− (t1)〉T

, (11)

g
(T )
− (m, t) = 〈σ(n2)

− (t2)σ
(n1)
+ (t1)〉T

, (12)

for the XX0 model in a transverse magnetic field are given as Fredholm determinants of

linear integral operators. These representations, quite different from those of paper [14],

are instead similar to the representations of two-point correlators previously obtained for

the one-dimensional Bose gas [8]-[10].

In order to obtain these representations we proceed as follows. The explicit form

for the eigenfunctions of Hamiltonian (1) is well known, being just the simplest case of

eigenfunctions of the XXZ model [21] with vanishing of two-particle scattering phases.

Using this explicit form one can represent the normalized mean value of, e.g., operator

σ
(n2)
+ (t2)σ

(n1)
− (t1) on the periodical lattice with finite number M of sites (with respect to

any eigenfunction with N quasiparticles over the ferromagnetic vacuum) as the determi-

nant of a N ×N matrix. Then, in the thermodynamical limit, correlator (11) is given by

the Fredholm determinant of a linear integral operator.

Corresponding derivations (similar to the case of the impenetrable bosons of ref. [10])

as well as the answer for finite lattice will be given in a more detailed paper. Here only

the results in the thermodynamical limit are presented. Due to space and time reflection

invariance, correlators (11) and (12) possess the following property:

g
(T )
± (m, t) = g

(T )
± (−m, t) =

[
g

(T )
± (−m,−t)

]∗
, (13)

so that all the answers are given for m ≥ 0.

We start with correlator (11), which, at zero temperature, is represented as follows:

g
(0)
+ (m, t) = exp[−2iht]

[
G(m, t) +

∂

∂z

]
det

[
Î + V̂ − zR̂(+)

]∣∣∣
z=0

. (14)

In the r.h.s. there is a Fredholm determinant. Linear operators V̂ and R̂(+) act on

functions f(p) on the interval −kF ≤ p ≤ kF (kF is the Fermi momentum (4)) as, e.g.,(
V̂ f

)
(p) =

1

2π

∫ kF

−kF

dq V (p, q)f(q) . (15)
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Operator Î is the identity operator (with kernel δ(p − q)). The kernels of operators V̂ ,

R̂(+), are

V (p, q) =
E+(p)E−(q)− E−(p)E+(q)

tan 1
2
(p− q)

−G(m, t)E−(p)E−(q) , (16)

R(+)(p, q) = E+(p)E+(q) , (17)

where functions E+, E−, are given as

E−(p) ≡ E−(m, t, p) = exp[− i
2
mp− 2it cos p] ,

E+(p) ≡ E+(m, t, p) = E−(p)E(m, t, p) (18)

Functions G(m, t) and E(m, t, p) are defined as follow:

G(m, t) =
1

2π

∫ π

−π
dq exp[imq + 4it cos q] = imJm(4t) , (19)

(Jm is the Bessel function) and

E(m, t, p) =
1

2π
P

∫ π

−π
dq

exp[imq + 4it cos q]

tan 1
2
(q − p)

≡

≡ 1

2π

∫ π

−π
dq

exp[imq + 4it cos q]− exp[imp+ 4it cos p]

tan 1
2
(q − p)

; (20)

here P means the principal value. It should be mentioned that kF = 0 for h ≥ hc ≡ 2.

In this case the ground state is the ferromagnetic state | 0〉 and the correlator is just the

“wave packet”:

g
(0)
+ (m, t) = exp[−2iht]G(m, t) =

1

2π

∫ π

−π
dq exp[imq − itε(q)] ,

g
(0)
+ (m, t = 0) = δm,0 , h ≥ hc . (21)

In the equal time case (t = 0) functions G(m, 0) and E(m, 0, p) can be explicitly

calculated:

G(m, 0) = δm,0 ; E(m, 0, p) = i(1− δm,0) exp[imp] ,

so that one obtains for the equal-time correlator at zero temperature

g
(0)
+ (m, 0) =

∂

∂z
det

[
Î + v̂ + zr̂(+)

]∣∣∣
z=0

, m > 0

g
(0)
+ (0, 0) =

1

2
+

1

2
〈σz〉T=0 = 1− kF

π
. (22)
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Operators v̂, r̂, act on the interval [−kF , kF ], with kernels

v(p, q) = −2
sin m

2
(p− q)

tan 1
2
(p− q)

,

r(+)(p, q) = exp[
i

2
m(p+ q)] . (23)

In the case of non zero temperature (T > 0) the representations are similar:

g
(T )
+ (m, t) = exp[−2iht][G(m, t) +

∂

∂z
] det

[
Î + V̂T − zR̂

(+)
T

]∣∣∣
z=0

, m ≥ 0 , (24)

g
(T )
+ (m, 0) =

∂

∂z
det

[
Î + v̂T + zr̂

(+)
T

]∣∣∣
z=0

, m > 0 ,

g
(T )
+ (0, 0) =

1

2
+

1

2
〈σz〉T

. (25)

Operators V̂T , v̂T , R̂
(+)
T , r̂

(+)
T , act over the interval [−π, π],

(V̂Tf)(p) =
1

2π

∫ π

−π
dq VT (p, q)f(q) , (26)

their kernels being equal to

VT (p, q) =
√
ϑ(p) V (p, q)

√
ϑ(q) ,

R
(+)
T (p, q) =

√
ϑ(p) R(+)(p, q)

√
ϑ(q) ,

vT (p, q) =
√
ϑ(p) v(p, q)

√
ϑ(q) ,

r
(+)
T (p, q) =

√
ϑ(p) r(+)(p, q)

√
ϑ(q) , (27)

where ϑ(p) is the Fermi weight (5) and functions V (p, q), R(+)(p, q), v(p, q), r(+)(p, q) are

defined in eqs. (16), (17), (23).

Analogous representations are valid also for correlator (12):

g
(0)
− (m, t) = exp[2iht]

∂

∂z
det

[
Î + V̂ + zR̂(−)

]∣∣∣
z=0

, (28)

g
(T )
− (m, t) = exp[2iht]

∂

∂z
det

[
(Î + V̂T + zR̂

(−)
T

]∣∣∣
z=0

, (29)

where V̂ and V̂T are the same operators as in (14), (24) and the kernels of operators R̂(−)

and R̂
(−)
T (acting over the interval [−kF , kF ], see (15), and [−π, π], see (26), respectively)

are

R(−)(p, q) = E−(p)E−(q) , (30)

R
(−)
T (p, q) =

√
ϑ(p) R(−)(p, q)

√
ϑ(q) , (31)
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with functions E−(q) defined in (18). It is worth mentioning that the zero-temperature

correlator (28) is equal to zero for magnetic field h ≥ hc = 2.

The Fredholm determinant representations of the kind of eqs. (22), (25), can be

obtained also for the equal time “generating functional” 〈exp[αQ(m)]〉T of the third spin

component correlators, where Q(m) is the operator of the “number of quasiparticles” at

the first m sites of the lattice:

Q(m) ≡
m∑

n=1

1

2
(1− σ(n)

z ) . (32)

For this expectation value one gets in the thermodynamical limit, at T = 0,

〈exp[αQ(m)]〉0 = det
[
Î + γÛ(m)

]∣∣∣
γ=eα−1

, (33)

and for non zero temperature

〈exp[αQ(m)]〉
T

= det
[
Î + γÛT (m)

]∣∣∣
γ=eα−1

. (34)

The kernels of operators Û(m) and ÛT (m) (acting on intervals [−kF , kF ] and [−π, π]

respectively) turn out to be

U(p, q;m) =
sin m

2
(p− q)

sin 1
2
(p− q)

, (35)

UT (p, q;m) =
√
ϑ(p)

sin m
2
(p− q)

sin 1
2
(p− q)

√
ϑ(q) . (36)

It is well known [14] that the XX0 model is equivalent to the free fermion model, the

free fermion fields being related to the local spin operators by means of Jordan-Wigner

transform:

ψ(m) = exp[iπQ(m− 1)]σ
(m)
+ ,

ψ†(m) = σ
(m)
− exp[iπQ(m− 1)] . (37)

Due to this equivalence the linear Fredholm operators in representations (22), (35) (and

(25), (36), correspondingly) should be in fact the same (for α = iπ or γ = −2). Indeed,

it is possible to rewrite representations (22), (25), in the equivalent form

g
(0)
+ (m, 0) =

∂

∂z
det

[
Î − 2Û(m− 1) + zr̂(+)

]
, (38)

g
(T )
+ (m, 0) =

∂

∂z
det

[
Î − 2ÛT (m− 1) + zr̂

(+)
T

]
, (39)
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(appearance of argument (m− 1) in operator Û is quite natural due to (37)).

It was already mentioned that representations similar to those obtained above gave

an opportunity to obtain differential equations for correlation functions in the case of

impenetrable bosons (the V Painlevé transcendent in the equal time zero temperature

case [1] and integrable partial differential equations for time and temperature dependent

correlators [4, 5]). This allowed to construct exact asymptotics for the correlators [1, 12,

13]. Corresponding results are expected to be obtained for the XX0 chain.

One of us (A.G. I.) would like to thank the Department of Physics of the University

of Firenze for hospitality. This work was done in the framework of the NATO S.P. Chaos,

Order and Pattern (CRG 901098).
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