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Abstract
In this talk we start with a short review of the many-time approach
and its application to the open Nambu string. This is a preliminary
and necessary step towards the search of a complete canonical set of
observables, i.e. a set of canonical variables in strong evolution with the
constraints of the string. This allows in turn to perform a canonical
transformation to a new canonical basis in which gauge and physical
degrees of freedom are completely separated into two canonical subsets.

1. Introduction.

This talk is based on work done in collaboration with G. Longhi and L. Lusanna[1].
We shall present a complete set of observables (i.e independent Cauchy data) for the open
Nambu string; moreover, we shall give a canonical transformation in the phase-space of the
string to a set of new canonical variables in which physical and gauge degrees of freedom
are well separated. This is the canonical basis for a set of Dirac brackets[2] in an arbitrary
gauge connected to the orthormal one.

It is worth stressing that this is not merely equivalent to the determination of the Dirac
brackets. The algebraic algorithm for the computation of the Dirac brackets doesn’t allow
by itself the determination of the elementary canonical variables of the Dirac Symplectic
structure. On the contrary, the complete set of these new canonical variables is such
that, in terms of them, the Dirac brackets are simply the Poisson bracets restricted to the
physical degrees of freedom.

The usefulness of such a canonical transformation stays in the fact that it allows to
perform a canonical quantization of the theory in an arbitrary gauge.

The problem of finding a complete set of observables is of very general interest, since
it is not yet completely solved for gauge theory nor general relativity.
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A preliminary step in the search of this complete set of observables is the discussion of
the theory in an arbitrary gauge (i.e. without limiting ourselves to the orthonormal gauge,
as it is usually done). This may be done through the many-time approach, which will be
shortly reviewed.

2. The many-time Approach.

The many-time approach was developed in reference[3] in order to study systems of n
nonrelativistic or relativistic particles with action-at-a-distance interactions described by
n first-class constraints in strong involution

{χa, χb} = 0 a, b = 1, ..., n, (2.1)

and for the general problem of a constrained system in[4].
Following the Dirac’s approach [2], if xµa, Pµa, a = 1, ...n, are the canonical variables,

with {xµa, P ν
b } = −ηµνδa

b , ηµν ≡ (1,−1,−1,−1), the Hamilton equations with respect to
the Dirac Hamiltonian are

d

dτ
xµa(τ) = {xµa,HD} ≈

∑n
b=1 λb(τ) {xµa, χb} ,

d

dτ
Pµa(τ) = {Pµa,HD} ≈

∑n
b=1 λb(τ) {Pµa, χb} .

(2.2)

These equations can be solved only after the first step in fixing a gauge, i.e. after assigning
a set of multipliers λa(τ).

Another way to approach the problem of solving the system (2.2) is to introduce n
“times” τa formally defined through the equations

dτa = λa(τ)dτ, (2.3)

and by redefining xµa(τ) = x̃µa(τ1, ..., τn), Pµa(τ) = P̃µa(τ1, ..., τn), equations (2.2) are
replaced by the n-times Hamilton equations

∂xµa

∂τ b
= {xµa, χb} ,

∂Pµa

∂τ b
= {Pµa, χb} ,

(2.4)

whose integrability conditions are just equations (2.1). Each “time” τa has its own Hamil-
tonian. This formal derivation of the equations of motion can be justified in a more
rigorous way, obtaining them as characteristic equations of the constraint’s equations as in
[4]. Since the system (2.4) is autonomous, apart from an initial constant each parameter
τa is defined by the system (2.4) itself, and can eventually be eliminated in terms of some
physical coordinate.
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The physical coordinates qµa(τa) in the configuration space are recovered [3] through
the Droz-Vincent conditions[5]{

{qµa, χb} = 0, when a 6= b,
qµa = xµa, when τ (a) = τ (a)(τ). (2.5)

The no-interaction theorem[6] stems from the requirement qµa = xµa when the times do
not satisfy τ (a) = τ (a)(τ).

When we have a set of first-class constraints in weak involution

{χa, χb} = Cc
ab(x, P )χc ≈ 0, (2.6)

equations (2.4), which are a direct consequence of definition (2.3), are no more integrable.
To recover integrable equations we have to replace the constraints χa with equivalent con-
straints χ̃a satisfying equations (2.1)[7]. In the finite-dimensional case their existence is
ensured (at least locally) by theorems about function groups[8,9], which however have no
general extension to the infinite-dimensional case. However, constraints in strong involu-
tion always exist when the original constraints can be solved in terms of a subset of the
canonical variables, and this is equivalent to the use of the BRST method [8].

3. The Classical Bosonic String.

Let us consider the action for the open Nambu string (h̄ = c = 1)

S = −N

∫ τ2

τ1

dτ

∫ π

0

dσ
√
−h(σ, τ), L = −N

√
−h, (3.1)

where N = 1
2πα′ , and

−h = −det ‖ hαβ ‖= (ẋ · x′)2 − ẋ2x′
2 ≥ 0. (3.2)

The strip 0 < σ < π is mapped in the world-sheet spanned by the string in the
Minkowski space, which is described by the coordinates xµ(σ, τ). hαβ(σ, τ) is the induced
metric.

Let us define the following two quantities
Pµ(σ, τ) = − ∂L

∂ẋµ(σ, τ)
= N

√
−hh0α∂αxµ =

N√
−h

((ẋ · x′)x′µ − x′
2
ẋµ),

Πµ(σ, τ) = − ∂L

∂x′µ(σ, τ)
= N

√
−hh1α∂αxµ =

N√
−h

((ẋ · x′)ẋµ − ẋ2x′
µ),

(3.3)

where Pµ is the canonical momentum, which satisfies the identities{
P 2(σ, τ) + N2x′

2(σ, τ) = 0,
(P (σ, τ) · x′(σ, τ)) = 0.

(3.4)
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The variational principle for the action (3.1), with the variations δ0x
µ(σ, τ) vanishing

at τ = τ1, τ2, is

δS =
∫ τ2

τ1

dτ

∫ π

0

dσLµδ0x
µ −

∫ τ2

τ1

dτΠµδ0x
µ|π0 = 0, (3.5)

and gives the following Euler-Lagrange equations and boundary conditions

Lµ(σ, τ) = Ṗµ + Π′µ = 0 (3.6)

Πµδ0x
µ|π0 = 0. (3.7)

These boundary conditions have been studied in detail in references [1–11], taking
into account the fact that the variation δ0x

µ are not all independent nor allowed, since a
variation of the boundaries must not violate the condition −h ≥ 0.

At this point the main problem in the classical theory is that the equation of motion
is highly non-linear and very difficult to solve.

What is usally done at this stage is to impose the orthonormal gauge, that is a choice
of the parametrization of the string world sheet which satisfies, beside

−h(σ, τ) ≥ 0, (3.8)

the conditions
ẋ2 + x′

2 = (ẋ · x′) = 0, (3.9)

that is

hαβ = ẋ2

(
1 0
0 −1

)
, with ẋ2 ≥ 0. (3.10)

The equation of motion now reduce to the well-known D’Alembert equation:

Lµ = N(ẍµ − x′′
µ) = 0 (3.11)

The usual o.g. boundary conditions are

x′
µ(0, τ) = x′

µ(π, τ) = 0, (3.12)

which turn out to be more restrictive than the orthonormal gauge translation of the general
boundary condition (3.7).

4. The Canonical Formalism.

In order to define a Poisson structure in the phase-space we will use the following
extension of the coordinates outside the interval (0, π), mainly in order to make contact
with the usual extension used in the literature on string models,xµ(σ, τ) = xµ(−σ, τ) = xµ(σ + 2nπ, τ),

Pµ(σ, τ) = Pµ(−σ, τ) = Pµ(σ + 2nπ, τ),
(4.1)
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where n is an integer, with the points σ = 2nπ, for any n (or σ = (2n + 1)π, for any n),
corresponding to the boundary values xµ(0, τ) and Pµ(0, τ) (or xµ(π, τ) and Pµ(π, τ)) as
limit values from the open interval (0, π).

Following reference[12] we introduce an even and odd delta function with period 2π:

∆±(σ, σ′) =
1
2π

∞∑
n=−∞

(
ein(σ−σ′) ± e−in(σ+σ′)

)
=

=
∞∑

n=−∞
(δ(σ − σ′ + 2nπ)± δ(σ + σ′ + 2nπ)) −→ δ(σ − σ′), for σ, σ′ ∈ (0, π).

(4.2)
We introduce the following Poisson structure (ηµν = (1;−1,−1,−1)):

{xµ(σ, τ), P ν(σ′, τ)} = −ηµν∆+(σ, σ′) −→ −ηµνδ(σ − σ′), for σ, σ′ ∈ (0, π). (4.3)

The set of identity (3.4) are now constraints on the phase-space:{
P 2(σ) + N2x′2(σ) ≈ 0,
P (σ) · x′(σ) ≈ 0.

(4.4)

Let’s define the following variables

Aµ
±(σ, τ) = Aµ

∓(−σ, τ) = Pµ(σ, τ)±Nx′
µ(σ, τ) =

∂

∂σ
Bµ
±(σ, τ), (4.5)

Bµ
±(σ, τ) = −Bµ

∓(−σ, τ) =
∫ σ

0

dσ′Aµ
±(σ′, τ)±Nxµ(0), (4.6)

With this definition, the constraints (4.4) becomes

χ±(σ) = χ∓(−σ) = A2
±(σ) ≈ 0, (4.7)

with the following algebra: {χ±(σ1, τ), χ±(σ2, τ)} = ∓2N (χ±(σ1, τ) + χ±(σ2, τ)) · (∆′
+(σ1, σ2) + ∆′

−(σ1, σ2)) ,

{χ+(σ1, τ), χ−(σ2, τ)} = −2N (χ+(σ1, τ) + χ−(σ2, τ)) · (∆′
+(σ1, σ2)−∆′

−(σ1, σ2)) .
(4.8)

Therefore the constraints are 1th-class, but they are in weak involution; the alge-
bra (4.16) is the universal Dirac algebra of reparametrization [2,13]. For the many-time
approach a set of 1th-class constraints in strong involution are needed.

One possible solution of the constraint makes use of lightcone variables; of course
other solutions are possible. In terms of the following lightcone variables

A+
±(σ, τ) =

1√
2

(
A0
±(σ, τ) + A3

±(σ, τ)
)
,

A−±(σ, τ) =
1√
2

(
A0
±(σ, τ)−A3

±(σ, τ)
)
,

(4.9)
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with the Lorentz indices now running over µ = +, 1, 2,−, we may define the new constraints

χ̃
(+)
± (σ, τ) =

χ±(σ, τ)
2A+

±(σ, τ)
= A−±(σ, τ)−

~A2
±(σ, τ)

2A+
±(σ, τ)

≈ 0, if A+
±(σ, τ) 6= 0, (4.10)

where ~A2 = (A1)2 + (A2)2.
If A+

±(σ) does vanish for some σ, we may do the same trick with the variable A−±(σ).
It is therefore important to outline that in order to solve the constraints we need in general
at least two charts, and that a particular resolution of the constraints holds in general only
locally. It may happen too that no one of the previous chart is good. We have the so-called
exceptional solution which may be recovered by other metods [1].

Thus our constraints are only weakly Poincaré invariant and are only locally defined,
in those regions of the constraints manifold χ±(σ, τ) ≈ 0 where the denominator don’t
vanish. But they are now in strong involution:

{χ̃±(σ, τ), χ̃±(σ′, τ)} = 0 (4.11)

5. Many-times Functional Equations of Motion.

Since we have found a set of strongly 1st-class constraints, we are now able to build
the many-time formalism for the Nambu string.

First of all we must introduce one “time” for each constraint, that is:

τ±(σ), with τ±(σ) = τ∓(−σ) = τ±(σ + 2nπ), (5.1)

with the boundary condition

δτ+(σn) = δ−τ(σn), σn = nπ, n ∈ Z, (5.2)

reflecting the fact that the constraints are not independent on the boundaries (see equation
(4.7)). This is to be compared to the Dirac approach, where we would have the Dirac
Hamiltonian

HD =
∫ π

0

dσ
[
λ+(σ)χ̃+(σ) + λ−(σ)χ̃−(σ)

]
. (5.3)

As we are in an infinite-dimensional case, the many-time equations of motion become
functional one. For a general dynamical variable F (σ|τ±(σ)] we shall have:

δF (σ|τ±(σ)]
δτ±(σ̄)

=
{

F (σ), χ̃±(σ̄)
}

. (5.4)

In the particular case of the Nambu string (by restricting ourselves to the interval
σ, σ′ ∈ (0, π), so that ∆±(σ, σ′) = δ(σ ∓ σ′) we get:

δAµ
+(σ|τ±]

δτ−(σ′)
= 0

δAµ
−(σ|τ±]

δτ+(σ′)
= 0

=⇒


Aµ

+ = Aµ
+(σ|τ+]

Aµ
− = Aµ

−(σ|τ−].
(5.5)
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The equations for A+
+(σ|τ+] and A+

−(σ|τ−] are
δA+

+(σ|τ+]
δτ+(σ′)

= −2Nδ′(σ − σ′)

δA+
−(σ|τ−]

δτ−(σ′)
= 2Nδ′(σ − σ′),

(5.6)

and their solution are 
A+

+(σ|τ+] = −2N
d

dσ
[τ+(σ)− c+(σ)]

A+
−(σ|τ−] = 2N

d

dσ
[τ−(σ)− c−(σ)] ,

(5.7)

where c±(σ) are a double infinity of “integration constants” which do not depend on τ±.
The remaining equations are

δAa
±(σ)

δτ±(σ̄)
= ∓2N

Aa
±(σ̄)

A+
±(σ̄)

δ′(σ − σ′), a = 1, 2,−. (5.8)

If we remember the definition (4.6) for the quantities Bµ
±(σ), we immediately see that

the solution of the + components of the many-time functional equation is such that

B+
±(σ = ∓2N

[
τ±(σ)− c±(σ)

]
≡ ∓2NT±(σ), (5.9)

that is the B+
±(σ) are just the canonical equivalents of the many-times. Moreover, in the

orthonormal gauge they reduce to:

B+
±(σ) O.N.−−−−→ ±Nq+ ± P+

π
(τ ± σ) = ±NQ+(τ ± σ), (5.10)

where Qµ(u) is the coordinate of one boundary of the string, in terms of which the solutions
are expressed in the orthonormal gauge[14]. As we shall see in the following, this point is
crucial as a guide to the construction of the generalization of the Del Giudice-Di Vecchia-
Fubini[15] to an arbitrary gauge.

Anyway the whole set of the many-time functional equations of motion may be solved
[1]; let’s only quote the result for assigned initial data (denoted by an overbar) at the initial
times τ̄±(σ): {

xµ(σ|τ+τ−]|τ±=τ̄±
= x̄µ(σ)

Pµ(σ|τ+τ−]|τ±=τ̄±
= P̄µ(σ). (5.11)

If we remember the equalities
xµ(σ) =

1
2N

(Bµ
+(σ)−Bµ

−(σ)),

Pµ(σ) =
1
2
(Aµ

+(σ) + Aµ
−(σ)),
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we get the classical solution

xµ(σ|τ+, τ−]
∣∣∣
τ±=τ̄±

=
1

2N

{
B̄µ

+[B̄+
+
−1(−2NT+(σ))]− B̄µ

−[B̄+
−
−1(2NT−(σ))]

}∣∣∣
τ±=τ̄±

=

=x̄µ(σ),

Pµ(σ|τ+, τ−]
∣∣∣
τ±=τ̄±

=
1
2

d

dσ

{
B̄µ

+[B̄+
+
−1(−2NT+(σ))] + B̄µ

−[B̄+
−
−1(2NT−(σ))]

}∣∣∣
τ±=τ̄±

=

=P̄µ(σ).
(5.12)

If we impose the orthonormal gauge to the many-times, the usual orthonormal gauge
solutions are recovered.

6. The Observables.

Let us now look for a local set of observables with respect to the first class constraints
χ̃±, in the (σ, τ) region where there are defined.

First of all we shall introduce the generalization to an arbitrary gauge of the Del
Giudice-Di Vecchia-Fubini (DDF) oscillators [15], which commute with the Virasoro gen-
erators Ln in the orthonormal gauge. They are the transverse part of the following objects:

Aµ
n =

1√
4πN

∫ π

−π

dσAµ
±(σ, τ) exp

[
±iωn

B+
±(σ, τ)
2NP+

]
, n = ±1,±2, ..., (6.1)

where ωn = 2πNn and P+ 6= 0. In the orthonormal gauge they reduce to

Aµ
n

O.N.−−−−→ DDF aµ
n =

1
2π

∫ π

−π

dσQ′(σ)einσ. (6.2)

The Aµ
n’s are gauge invariant quantities; they are also constant of motion, due to the

vanishing of the canonical hamiltonian:
{

~An(τ), χ̃±(σ, τ)
}

= 0{
A−n (τ), χ̃±(σ, τ)

}
= − iωn

P+
exp

[
±iωn

B+
+(σ, τ)
2NP+

]
· χ̃±(σ, τ) ≈ 0.

(6.3)

For the Aµ
n’s we have the following properties:

A+
n =0 for n 6= 0, (6.4)

Aµ
0 =

Pµ

√
πN

. (6.4)

Moreover, the A−n ’s satisfy the Virasoro algebra.
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The inversion formula of equations (6.1) is

Aµ
±(σ, τ) =

√
4πN

A+
±(σ, τ)
2P+

+∞∑
n=−∞

Aµ
n(τ) exp

[
∓iωn

B+
±(σ, τ)
2NP+

]
=

=
√

4πN
A+
±(σ, τ)
2P+

+∞∑
n=−∞

Aµ
±n(τ) exp

[
−iωn

B+
±(σ, τ)
2NP+

]
.

(6.5)

We thus recognize in our observables a generalization to an arbitrary gauge of the Fourier
modes of the D’Alembert solutions.

For the transverse oscillators we have the following Poisson algebra:{
Aa

m, Ab
n

}
= −imδabδm,−n. (6.6)

If we want a canonical basis of observables for the transverse oscillatory modes, we may
define (n > 0): P a

n ≡
(
Aa
−n + Aa

n

)
,

Xa
n ≡

(
Aa
−n −Aa

n

) 1
2in

.
(6.7)

We obtain the following canonical algebra{
Xa

n, P b
m

}
= δabδm,n, with n, m > 0. (6.8)

7. The Canonical Transformation.

Let us define relative and center of mass variables for the string. The center-of-mass
coordinates of the string are 

Xµ(τ) =
1
2π

∫ π

−π

dσxµ(σ, τ),

Pµ =
1
2

∫ π

−π

dσPµ(σ, τ),
(7.1)

where Pµ is the conserved generator of the space-time translations.
Let us introduce the following relative coordinates{

yµ(σ, τ) = −x′
µ(σ, τ) = −yµ(−σ, τ),

Pµ(σ, τ) =
∫ σ

0
dσ′Pµ(σ′, τ)− σ

π
Pµ = −Pµ(−σ, τ) = Pµ(σ + 2nπ, τ), (7.2)

with the following properties
∫ π

−π
dσyµ(σ, τ) =

∫ π

−π
dσPµ(σ, τ) = 0,

Pµ(0) = Pµ(±π) = 0 →
∫ π

−π
dσP ′µ(σ, τ) = 0.

(7.3)
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It may be checked that the coordinates (7.1) and (7.2) constitute a basis of canonical
variables  {Xµ, P ν} = −ηµν ,

{yµ(σ, τ),Pν(σ′, τ)} = −ηµν∆−(σ, σ′),
(7.4)

with all the other Poisson brackets vanishing.
The inverse formulae are

xµ(σ, τ) = Xµ(τ) +
1
2π

∫ π

−π

dσ1

∫ σ1

0

dσ2y
µ(σ2, τ)−

∫ σ

0

dσ2y
µ(σ2, τ),

Pµ(σ, τ) =
1
π

Pµ + P ′µ(σ, τ).
(7.5)

Let us now look for a canonical transformation such that gauge and physical degrees
of freedom are completely separated.

As for the physical sector, since we already got the transverse oscillators observables
~An(τ), we now only need to find 6 observables for the center-of-mass of the string. Three
of them are P+, ~P . Their conjugate observable variables, Z−, ~Z, are:

Z−(τ) = X−(τ)− 1
2P+

∫ π

−π
dσ

{
x+(σ, τ)

2

(
~A2
−(σ, τ)

2A+
−(σ, τ)

+
~A2

+(σ, τ)
2A+

+(σ, τ)

)
+

− P+(σ, τ)
2N

(
~A2
−(σ, τ)

2A+
−(σ, τ)

−
~A2

+(σ, τ)
2A+

+(σ, τ)

)}
,

~Z(τ) = ~X+(τ)− 1
2P+

∫ π

−π
dσ
[
x+(σ, τ)~P (σ, τ)− ~y(σ, τ)P+(σ, τ)

]
.

(7.6)

The so defined quantities are effectively observables, since it can be checked that:{
Z−(τ), χ̃±(σ, τ)

}
=
{

~Z(τ), χ̃±(σ, τ)
}

= 0. (7.7)

Besides, the non vanishing Poisson brackets among these 6 observables are{
{Z−, P+} = −1,{
Za, P b

}
= −δab, a, b = 1, 2.

(7.8)

We can now define a canonical transformation from the variables xµ(σ, τ), Pµ(σ, τ) to
a new canonical base fitting to the multitemporal approach of the previous Section. This
new base should be an appropriate point of departure toward the construction of Dirac
brackets [12] associated to gauge-fixing constraints like those of the orthonormal gauge.
This kind of canonical transformation for a system with first class constraints[16] generates
new canonical variables divided into two sets. In one set, half of the canonical variables
are functions of the first class constraints, hence vanishing on the manifold defined by the
constraints in the phase-space, while the other half constitute a possible choice of the gauge
degrees of freedom of the theory. In the second set we have those observables which have
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vanishing Poisson brackets with the chosen gauge degrees of freedom. The gauge sector of
the new variables is composed by{

Y −(σ, τ) =
1

2N
(χ̃−(σ, τ)− χ̃+(σ, τ)) ,

P+(σ, τ),
(7.9)

{
x+(σ, τ),

Π−(σ, τ) =
1
2

(χ̃−(σ, τ) + χ̃+(σ, τ)) .
(7.10)

If we separate Π−(σ, τ) in is center-of-mass and relative part:

Π−(σ, τ) =
Ξ−tot(τ)

π
+ Ξ′−rel(σ, τ), (7.11)

where Ξtot =
1
2
∫ π

−π
dσΠ−(σ),

Ξ−rel =
∫ σ

0
dσ′Π−(σ′)− σ

π
Ξ−tot,

(7.12)

we may replace X+(σ, τ), Π−(σ, τ) with the new gauge variables{
X+(τ),
Ξ−tot(τ),{
y+(σ, τ),
Ξ−rel(σ, τ).

(7.13)

The constraints χ̃± ≈ 0 are equivalent to Y −(σ, τ) ≈ 0, Π−(σ, τ) ≈ 0 (or Ξ−tot(τ) ≈ 0,
Ξ−rel(σ, τ) ≈ 0).

The sector of the observables is composed by the ~αn, P+, Z−, ~P , ~Z. It is only a
matter of calculation to verify that the non-vanishing Poisson brackets are

gauge sector


{Y −(σ, τ),P+(σ′, τ)} = −∆−(σ, σ′),
{x+(σ, τ),Π−(σ′, τ)} = −∆+(σ, σ′),{
X+(τ),Ξ−tot(τ)

}
= −1,{

y+(σ, τ),Ξ−rel(σ
′, τ)

}
= −∆−(σ, σ′),

physical sector


{
αa

n, αb
−m

}
= −iδabδnm, a, b = 1, 2,

{Z−, P+} = −1,{
Za, P b

}
= δab, a, b = 1, 2.

(7.14)

We notice that equations (5.9) connect the “times” τ±(σ) to the observable P+ and
to the gauge variables x+(σ, τ), P+(σ, τ), via B+

±(σ, τ). As it is apparent from equation
(7.14), we have separated into two diffferent sectors the gauge and physical degrees of
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freedom. This is in fact equivalent to the construction of Dirac brackets in an arbitrary
gauge connected to the orthonormal one. This allows for instance to perform the canonical
quantization procedure for the string, without gauge fixing.

With some calculation, it is possible to find the inverse canonical transformation,
which is defined by the following expressions:

x+(σ, τ);

P−(σ, τ) = Π−(σ, τ) +
P+(σ, τ)

2P+2

(
~P 2 +

∞∑
n=1

ωn~αn · ~α−n

)
+

+
πN

P+

∞∑
n=1

{(
A+

+(σ, τ)
2P+

exp

[
−iωn

B+
+(σ, τ)
2NP+

]
+

A+
−(σ, τ)
2P+

·

· exp

[
iωn

B+
−(σ, τ)
2NP+

])
Ũ−n +

(
A+

+(σ, τ)
2P+

exp

[
+iωn

B+
+(σ, τ)
2NP+

]
+

+
A+
−(σ, τ)
2P+

exp

[
−iωn

B+
−(σ, τ)
2NP+

])
Ũ−−n

}
;

x−(σ, τ) = Z− +
x+(σ, τ)
2P+2

(
~P 2 +

∞∑
n=1

ωn~αn · ~α−n

)
+

+
1
2π

∫ π

−π

dσ1

∫ σ1

0

dσ2Y
−(σ2, τ)−

∫ σ

0

dσ2Y
−(σ2, τ)+

+
i

2P+

∞∑
n=1

1
n

[(
exp

[
−iωn

B+
+(σ, τ)
2NP+

]
+ exp

[
iωn

B+
−(σ, τ)
2NP+

])
Ũ−n (τ) +

−

(
exp

[
−iωn

B+
−(σ, τ)
2NP+

]
+ exp

[
iωn

B+
+(σ, τ)
2NP+

])
Ũ−−n(τ)

]
;

P+(σ, τ) =
P+

π
+ P ′+(σ, τ); (7.15)

~x(σ, τ) = ~Z(τ) +
~P

P+
x+(σ, τ)+

+
i√
2

∞∑
n=1

1
√

ωn

[(
exp

[
−iωn

B+
+(σ, τ)
2NP+

] + exp[iωn
B+
−(σ, τ)
2NP+

])
~αn +

−

(
exp

[
−iωn

B+
−(σ, τ)
2NP+

]
+ exp

[
iωn

B+
+(σ, τ)
2NP+

])
~α−n

]
;

~P (σ, τ) =
~P

P+
P+(σ, τ) +

∞∑
n=1

√
ωn

2

[(
A+

+(σ, τ)
2P+

exp

[
−iωn

B+
+(σ, τ)
2NP+

]
+

+
A+
−(σ, τ)
2P+

exp

[
iωn

B+
−(σ, τ)
2NP+

])
~αn +

12



+

(
A+
−(σ, τ)
2P+

exp

[
−iωn

B+
−(σ, τ)
2NP+

]
+

A+
+(σ, τ)
2P+

exp

[
iωn

B+
+(σ, τ)
2NP+

])
~α−n

]
,

where Ũ−n is given by

Ũ−n =
1
2

∞∑
n=−∞

~An−m · ~Am, (7.16)

and A+
±, B+

± are expressed in terms of P+, P+(σ, τ), x+(σ, τ) in equations (4.5), (4.6).
It is also possible to write the results of equations (7.15) in a more compact form

through the use of the generalized DDF oscillators; we obtain:

xµ(σ, τ) =Zµ(τ) +
Pµ

P+
x+(σ, τ)+

+
i

2
√

πN

∑
n 6=0

Aµ
n(τ)
n

(
exp

[
−iωn

B+
+(σ, τ)
2NP+

]
+ exp

[
iωn

B+
−(σ, τ)
2NP+

])
+

+
(
ηµ0 + ηµ3

){ 1
2π

∫ π

−π

dσ1

∫ σ1

0

dσ2Y
−(σ2, τ)−

∫ σ

0

dσ2Y
−(σ2, τ) +

− i

2P+

∑
n 6=0

L̃n(τ)
n

(
exp

[
−iωn

B+
+(σ, τ)
2NP+

]
+ exp

[
iωn

B+
−(σ, τ)
2NP+

]) ,

(7.17)

where we have defined Z+ ≡ X+, and

Pµ(σ, τ) =
Pµ

P+
P+(σ, τ) +

√
πN

∑
n 6=0

Aµ
n(τ)

(
A+

+(σ, τ)
2P+

exp

[
−iωn

B+
+(σ, τ)
2NP+

]
+

+
A+
−(σ, τ)
2P+

exp

[
iωn

B+
−(σ, τ)
2NP+

])
+

+
(
ηµ0 + ηµ3

)Π−(σ, τ)− P+(σ, τ)
P+

Ξ−tot(τ)− πN

P+

∑
n 6=0

L̃n(τ) · (7.18)

·

(
A+

+(σ, τ)
2P+

exp

[
−iωn

B+
+(σ, τ)
2NP+

]
+

A+
−(σ, τ)
2P+

exp

[
iωn

B+
−(σ, τ)
2NP+

])]
,

where P− is given by

P− =
1

2P+

(
~P 2 +

∞∑
n=1

ωn~αn · ~α−n

)
+ Ξtot−(τ) =

=
1

2P+

(
~P 2 + 2πN

∞∑
n=1

~An · ~A−n

)
+ Ξtot−(τ).

(7.19)
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8. Conclusions.

If we perform the canonical quantization in one chart, we recover the critical dimension
D = 26 of the non-covariant approach. However in this way one looses the contribution
of the non-overlapping part of the second chart, that is of the classical longitudinal modes
of Patrascioiu. Moreover one also looses the contribution of the other exceptional charts,
which contain only longitudinal modes [1]. This fact may explain why in the covariant
quantization approach there are solutions of the no-ghost theorem with D < 26, but
with the extra longitudinal modes of Brower (or the Liouville modesin the Polyakov path
integral approach).

However the main motivation for this work lies in the strategy to solve the part
of the dynamics connected to the 1st-class constraints without fixing the gauge, and to
find the observables (in a gauge theory) or the independent Cauchy data (in a generally
covariant theory). This strategy is based on the search of symplectic bases in phase-space,
adapted to the constraints, and which are the only relevant ones for a parametrization of
the constraints presymolectic manyfold. Such bases generally exist only locally and this is
connected to the possible abelanizations of the original 1st-class constraints. In this way
one should build an atlas for the constraints manyfold, and the quantization should be
done in a way consistent with this atlas.

Many problems are still open: 1) find the Wigner covariant form of the constraints
and the atlas; 2) study the classical action-angle variables and see whether there is one
set such that the Poincaré Casimirs in D=4 are independent from the angle variables; 3)
study the connection of our observables (independent Cauchy data for the string) with
the Pohlmeyer-Rehren constants of motion[17]; 4) find a generalization of the concept of
Green function in connection with the solutions (5.12).

This strategy may then be applied to other systems with 1st-class constraints like
Yang-Mills fields, Chern-Simons theory, 2+1 gravity and general relativity in the Ashtekar
formulation[18]. New problems arise already at the classical level, like the relationship
between global topological observables, and the one associated to the local adapted sym-
plectic charts, describing the local independent physical degrees of freedom (when they
exist).
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