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Abstract

In this paper the many-time approach for the open Nambu string is de-
veloped. This allows the discussion of the model in a general gauge. The
corresponding functional equations of motion are solved; the restriction
to the orthonormal gauge gives the standard results. These solutions
are a preliminary and necessary step in the search of a complete set of
observables, which will be the argument of a subsequent paper.

1. Introduction.

String and superstring theories[1] are one of the most interesting laboratories for the
study of several subjects of the current theoretical investigation, as relativistic extended
objects, two dimensional conformal theories, dual models and their S-matrix elements with
the use of the theory of Riemann surfaces of arbitrary genus, and again anomalies and their
cancellation. This apart from its interest as a possible unified theory of gravity.

In the present paper we shall develop the many-time [2] approach for the open Nambu
string, which in principle allows to discuss the theory in a general gauge, and we shall solve
the corresponding functional equations of motion as a preliminary step in the search of a
complete set of observables, which will be the argument of a subsequent paper.
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The problem of finding a complete set of observables is of very general interest, since
it is not yet completely solved for gauge theories nor general relativity[3]

In order to clarify the argument of the present paper, it is useful to summarize what
is known about the theory of the string models.

When a classical formulation is available, all string models are described in terms
of 1th-class constraints[4] in the bosonic case[5,6], and in terms of 1th and 2th-class con-
straints in the case of fermionic extensions[7]. The Euler-Lagrange equations of the bosonic
string become the usual (linear) wave equation in the orthonormal gauge (o.g.), and the
reparametrization invariance reduces to the two-dimensional conformal group. Two extra
conditions are required in order to completely fix the gauge.

The solutions in an arbitrary gauge are given in reference [7], where they are obtained
starting from the Brink-Di Vecchia-Howe[8] reformulation of the Nambu action. This form
of the action is more suitable for a path integral approach[9]; it has extra variables given
by the elements of the metric gαβ(σ, τ), α = 0, 1, of the (σ, τ) space. In this approach the
constraints of the string are secondary constraints.

The usual phase-space approach to the Nambu string [6,10] is performed in the o.g.,
with an extension from the range σ ∈ (0, π) to (−π, π).

This is the standard covariant formalism. If one wishes to completely fix the gauge,
one has to add two other gauge fixings for each point of the string, and then one has to
evaluate the Dirac brackets [10]: in this way the usual non covariant light-cone gauge is
obtained, in which only physical degrees of freedom are present.

In the non covariant quantization the critical dimension D = 26 and the value of the
Regge intercept α(0) = 1 arise from the requirement of the cancellation of the anomaly,
which, at the quantum level, is present in the Lorentz algebra. Correspondingly, in the
covariant quantization, the Virasoro algebra requires a c-number Schwinger term, which
corresponds to a central charge extension of the conformal algebra. The presence of the
Lorentz anomaly in the non covariant approach is here substituted by the presence of
ghosts.

The no ghost theorem[11] has a solution for D = 26, like in the non covariant approach,
and this is the only solution consistent with the BRST approach to the string theory[12].

However, in the open string case, the no-ghost theorem has other solutions, in partic-
ular for D = 4, where extra longitudinal modes are present, the so-called Brower modes
[13]. Extra modes, the Liouville modes, are also present in the Polyakov approach [9], for
D = 4 (see references[14,15] for attempts to identify them with the Brower modes, and
reference[16] for the consistency of the BRST approach in this case). On the other hand
there are indications that in the non covariant (lightcone transverse) approach some longi-
tudinal mode could be lost (the Patrascioiu solutions[17]). Finally, dimensional reduction
from D = 26 to D = 4 also introduces extra modes besides the purely transverse ones.

All these facts are an indication of a possible incompleteness of the non covariant
quantization in D < 26.

The present paper was stimulated by these problems. If we apply the many-time
approach [2] in order to find the classical solutions of the Hamilton equations in an arbitrary
gauge, and not only in the o.g., these solutions can be only found in local charts on the
manifold of the constraints.
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The many-time approach was developed for the case of 1th-class constraints in strong
involution in nonrelativistic and relativistic dynamics[18]. As the constraints of the Nambu
string model are in weak involution, they must be substituted by an equivalent set of
constraints in strong involution (abelianization), in order to have integrable equations of
motion. This very circumstance compels us to the choice of local charts. It should be
observed that the existence of this set of equivalent abelian constraints is not ensured by
general theorems as in the finite dimensional case. Nevertheless, for the case of the Nambu
string model, the existence of this set seems to be implied by the feasibility of the BRST
approach[19].

It turns out that the Nambu constraints manifold is covered by two main overlapping
charts plus a set of other disconnected charts with longitudinal modes only. The obstruc-
tion in getting global solutions is such that in each of the two main charts one looses just
the analogous of the Patrascioiu modes, which live in the other chart

The local quantization in a chart gives the usual critical dimension D = 26. It
remains open the problem of a global quantization, and the comparison with the D = 4
solution of the covariant quantization. Even if we do not know yet how to do a global
quantization (reference[20] could be relevant in this respect), we hope to have clarified some
aspects of the gauge theory of the Nambu string model, and in particular the relevance
of the Patrascioiu modes, which could explain the discrepancy between the non covariant
quantization and the covariant one in D < 26.

The solutions in a general gauge given by Hwang and Marnelius [7] are also local; it
is worth observing that the method of this last reference is peculiar to the string model,
while the many-time approach is a general one.

In a future paper we will present a complete set of observables, giving the generaliza-
tion of the transverse modes of Del Giudice-Di Vecchia-Fubini [21] to an arbitrary gauge.
It will then be possible to find a canonical transformation from the original phase-space
variables to a new set, in which the gauge degrees of freedom are separated from the
observables. This is the canonical basis for a set of Dirac brackets, as the ones given in
reference [10].

In Section 2 we give a review of the Nambu string model and of the o.g. treatment,
and a discussion of the boundary conditions and of the Patrascioiu modes.

In Section 3 we discuss the canonical formulation and we define the center of mass
and relative variables.

Finally, in Section 4 the functional equations of motion are solved. With a proper
choice of the parameters, the usual results of the o.g. are recovered.

In Appendix A we discuss the transition from regular to singular parametrizations of
the world-sheet of the string.

The consistency of the boundary conditions is checked in Appendix B, through an
expansion near the end points of the string.

Some useful formulas are listed in Appendix C.

2. The Classical Bosonic String.

3



Let us consider the action for the open Nambu string (h̄ = c = 1)

S = −N

∫ τ2

τ1

dτ

∫ π

0

dσ
√
−h(σ, τ), L = −N

√
−h, (2.1)

where N = 1
2πα′ , and

−h = −det ‖ hαβ ‖= (ẋ · x′)2 − ẋ2x′
2 ≥ 0, (2.2)

‖ hαβ ‖=‖ ∂αxµ∂βxµ ‖=
(

ẋ2 ẋ · x′
ẋ · x′ x′

2

)
, α = 0, 1, ∂0 =

∂

∂τ
, ∂1 =

∂

∂σ
, (2.3)

and where −h ≥ 0 means that the surface swept by the string in the spacetime is every-
where timelike or null (i.e. it is a causal surface)[22].

The strip 0 < σ < π is mapped in the world-sheet spanned by the string in the
Minkowski space, which is described by the coordinates xµ(σ, τ). hαβ(σ, τ) is the induced
metric, whose inverse is

‖ hαβ ‖= 1
h

(
x′

2 −(ẋ · x′)
−(ẋ · x′) ẋ2

)
. (2.4)

Let us define the following two quantities
Pµ(σ, τ) = − ∂L

∂ẋµ(σ, τ)
= N

√
−hh0α∂αxµ =

N√
−h

((ẋ · x′)x′µ − x′
2
ẋµ),

Πµ(σ, τ) = − ∂L

∂x′µ(σ, τ)
= N

√
−hh1α∂αxµ =

N√
−h

((ẋ · x′)ẋµ − ẋ2x′
µ),

(2.5)

where Pµ is the canonical momentum, which satisfies the identities{
P 2(σ, τ) + N2x′

2(σ, τ) = 0,
(P (σ, τ) · x′(σ, τ)) = 0.

(2.6)

Other identities are 
Π2 + N2ẋ2 = 0,
(Π · ẋ) = 0,
(Π · x′) = N

√
−h,

(Π · P ) = N2(ẋ · x′),
(P · ẋ) = N

√
−h.

(2.7)

The Hessian is

‖ Wµν(σ, τ) ‖ =‖ ∂2L

∂ẋµ∂ẋν
‖=

=‖ Nx′
2

(−h)
3
2
[−hηµν + x′

2
ẋµẋν + ẋ2x′

µ
x′

ν − (ẋ · x′)(ẋµx′
ν + x′

µ
ẋν)] ‖ .

(2.8)
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ẋµ(σ, τ) and x′
µ(σ, τ) are the null eigenvectors of the Hessian for every value of σ except

the end values σ = 0, π. The non-null eigenvalues are degenerate for σ 6= 0, π, and are
equal to

Nx′
2(σ, τ)√

−h(σ, τ).

The non-null eigenvectors εµ
λ(σ.τ), with λ = 1, 2, are orthogonal to ẋµ and x′

µ, i.e. to the
world-sheet, and so they are spacelike.

The variational principle for the action (2.1), with the variations δ0x
µ(σ, τ) vanishing

at τ = τ1, τ2, is

δS =
∫ τ2

τ1

dτ

∫ π

0

dσLµδ0x
µ −

∫ τ2

τ1

dτΠµδ0x
µ|π0 = 0, (2.9)

and gives the following Euler-Lagrange equations and boundary conditions

Lµ(σ, τ) = Ṗµ + Π′µ = −Wµν [ẍν +
1

x′2
(
ẋ2x′′ν − 2(ẋ · x′)ẋ′ν

)
] =

= N∂α

(√
−hhαβ∂βxµ

)
= 0,

(2.10)

Πµδ0x
µ|π0 = 0. (2.11)

These boundary conditions have been studied in detail in references [22] and[23], where
it is shown that in regular coordinates, corresponding to a parametrization of the string
world-sheet such that the tangent vectors x′

µ(σ, τ) and ẋµ(σ, τ) do not vanish and are
independent, it amounts in requiring

Πµx′
µ|π0 = N

√
−h|π0 = 0. (2.12)

As stressed by the authors of references [22] and [23], the requirement of regular
coordinates is crucial for a consistent action principle.

The restriction from (2.11) to (2.12) is due to the requirement that a variation of the
boundaries must not violate the condition −h ≥ 0; nevertheless, in the o.g. the usual
conditions

x′
µ(0) = x′

µ(π) = 0 (2.13)

can be used.
In particular, in reference [22] it is shown that only the contribution to δxµ propor-

tional to x′
µ contributes to the boundary term (2.11).

If we only choose coordinates such that

ẋ2 ≥ 0, x′
2 ≤ 0, (2.14)

the condition h = 0 implies two possible situations at the end points:
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i) x′
2

< 0, ẋ2 = 0, (ẋ · x′) = 0, with ẋµ and x′
µ independent and ẋµ 6= 0. This is

a regular case (the jacobian of the map (σ, τ) → xµ has maximal rank 2). In this case
the rank of the induced metric ‖ hαβ ‖ is 1, and the end points of the string describe null
surfaces [22]. There is the possible case ẋµ = 0, which is a singular case (the jacobian of
the map (σ, τ) → xµ has rank 1).

ii) x′
2 = 0, ẋ2 = 0, (ẋ ·x′) = 0, with x′

µ collinear to ẋµ. This is a singular case (where
we may have Πµ 6= 0 as well as Πµ = 0).

The case x′
µ = 0, corresponding to the o.g., may be considered as a particular case of

(ii), since it is again a singular case.
Since we want to describe the solutions of the classical equations of motion in a class

of gauges including as a special case the o.g., we want to work with the class (ii), that is
necessarily with singular coordinates.

Let us check if the boundary condition h|π0 = 0 is preserved in a singular case (since it
was deduced in the regular one). We may perform a transformation from regular coordi-
nates to those which will become singular at the end points, in the interior of the interval
(0, π), that is from the class (i) to the class (ii). As shown in reference [23], and more
explicity in the Appendix A, the jacobian of the transformation vanishes as

√
σ in σ = 0

(and in an analogous way in ±π), so ensuring, a fortiori, the vanishing of the new h at the
end points.

So we will assume the boundary conditions (2.12), with a choice of coordinates falling
into class (ii).

In order to completely define the physical hypotheses, we will assume that the total
momentum of the string Pµ be such that P 2 ≥ 0, with Pµ 6= 0. As shown in the Appendix
B, this ensures a unique solution at the end points of the string with Pµ and Πµ finite.

Let us stress that, with this kind of boundary conditions, the function x′
µ(σ, τ),

extended to all the real axis, may be discontinuos in σ = 0, π.
Let us recall that the Hessian Wµν has two null eigenvectors. Their existence is

connected to the σ, τ reparametrization invariance of the action; that is the action is
invariant under the following transformations{

δτ = τ̃(σ, τ)− τ,
δσ = σ̃(σ, τ)− σ, σ̃(0, τ) = 0, σ̃(π, τ) = π,

(2.15)

δxµ(σ, τ) = x̃µ(σ̃, τ̃)− xµ(σ, τ) = δ0x
µ(σ, τ) + ẋµ(σ, τ)δτ + x′

µ(σ, τ)δσ = 0, (2.16)

where the last formula expresses the fact that xµ(σ, τ) is scalar under reparametrization. It
must also remembered that only two of the equations (2.10) are independent, for σ 6= 0, π,
as

ẋµLµ = 0, and x′µLµ = 0.

Let us now recall how the theory is developed in the o.g. case. The o.g. is defined by
a choice of parameters which satisfy, beside

−h(σ, τ) ≥ 0, (2.17)

the conditions
ẋ2 + x′

2 = (ẋ · x′) = 0, (2.18)
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that is

hαβ = ẋ2

(
1 0
0 −1

)
, with ẋ2 ≥ 0. (2.19)

This implies the following conditions
Lµ = N(ẍµ − x′′

µ) = 0,
Pµ = Nẋµ,
Πµ = −Nx′

µ
,

Wµν = −N

ẋ2
(ẋ2ηµν − ẋµẋν + x′

µ
x′

ν).

(2.20)

The usual o.g. boundary conditions are

x′
µ(0, τ) = x′

µ(π, τ) = 0, (2.21)

so we have
ẋ2(0, τ) = ẋ2(π, τ) = 0. (2.22)

This in particular means that at the end points the induced metric hαβ has zero rank. This
is peculiar of a set of singular choices of parameters, like in the o.g., where the singular
character is shown by the fact that the tangent field x′ vanishes at the end points.

These boundary conditions suggest the following extension from the interval (0, π) to
(−π, π)

xµ(σ, τ) = xµ(−σ, τ), (2.23)

and to the real line with 2π periodicity.
The solutions of the equations (2.20) satisfying (2.21) are

xµ(σ, τ) =qµ +
Pµ

πN
τ + fµ(τ + σ) + fµ(τ − σ) =

=qµ +
Pµ

πN
τ +

i√
πN

∑
n 6=0

αµ
n exp (−inτ) cos nσ =

=
1
2
[Qµ(τ + σ) + Qµ(τ − σ)],

(2.24)

with (
Pµ

2πN
+

dfµ(u)
du

)2

= 0, fµ(u) = fµ(u + 2nπ), (2.25)

where
u = τ ± σ,

and where

Pµ =
∫ π

0

dσPµ(σ, τ)
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is the conserved total momentum. Equation (2.25) is a consequence of the o.g. conditions,
and 

Qµ(τ) = xµ(0, τ) = qµ +
Pµ

πN
τ + 2fµ(τ),

Qµ(τ + 2π) = Qµ(τ) + 2
Pµ

N
,

(2.26)

is the coordinate of the end point at σ = 0.
In terms of Qµ equation (2.25) becomes

1
4
Q̇2(τ) = 0.

The coordinates of the other end point are

xµ(π, τ) = xµ(0, τ + π)− Pµ

N
= Qµ(τ + π)− Pµ

N
,

see reference [24]. In this reference it is shown that the end points suffer a constant
translation of 2P µ

N for every ∆τ = 2π, and that for ∆τ = π the distance between them
is P µ

N . Their motion is given by a double helix with these periods. Qµ(τ) is a relevant
function, because the transverse conformal invariant oscillators defined by Del Giudice, Di
Vecchia and Fubini [21]

An =

√
N

2π

∫ π

−π

dρ
dQ(ρ)

dρ
exp (iπn

Q+(ρ)
P+

) (2.27)

and the vertex of the dual models

exp (iQ+(z))

are defined in terms of it[25]. The Cauchy problem for the equations (2.20) is defined
in reference [26]. The residual invariance group in the o.g. is given by the conformal
transformations holding the end points σ = 0, π fixed[27]:

τ̃ = τ1 + τ + g(τ + σ) + g(τ − σ) = τ1 + τ +
∑
n 6=0

an cos nσ · exp (−inτ),

σ̃ = σ + g(τ + σ)− g(τ − σ) = σ − i
∑
n 6=0

an sinnσ · exp (−inτ),

(2.28)

and the Jacobian is

J =
∂(τ̃ , σ̃)
∂(τ, σ)

= [1 + 2g′(τ + σ)][1 + 2g′(τ − σ)] 6= 0,

or

1 + 2
dg(u)
du

6= 0.
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These transformations leave invariant in form the wave equation (2.20) and the con-
ditions (2.18).

To completely fix the gauge one has to add a further condition, for instance of the
kind [10]

tµ[xµ(σ, τ)− qµ − Pµτ

πN
] = 0, (2.29)

where tµ is a constant vector. In the usual light-cone gauge one has

tµ = (1; 0, 0, 1),

so that

x+(σ, τ)− q+ − P+τ

πN
= 0, A+ = A0 + A3, implying f+(u) = 0,

(compare equation (2.24).
Patrascioiu [17] noticed that, while in a timelike gauge, tµ = (1;0) and f0(u) = 0,

every solution of equation (2.20) can be made to satisfy equation (2.29) because P 0 6= 0,
in the light-cone gauge solutions exist which cannot satisfy equation (2.29). Let us review
his argument, on which we will come back in the following, when discussing the solutions
of the classical equations of motion.

Let us start from an arbitrary o.g., with a solution xµ(σ, τ) not satisfying equation
(2.29), and let us look for a conformal transformation (2.28) to a new o.g. (x̃µ(σ̃, τ̃)),
where

x̃+ − q̃+ − P+τ̃

πN
= 0.

From xµ(σ, τ) = x̃µ(σ̃, τ̃) and Pµ = P̃µ we get
qµ = q̃µ +

Pµτ1

πN
,

fµ(u) =
Pµ

πN
g(u) + f̃µ[τ1 + u + 2g(u)].

(2.30)

Equation (2.29) implies f̃+(u) = 0 or g(u) =
πN

P+
f+(u). Now equations (2.28) and

(2.25) imply
1 +

2πN

P+

df+(u)
du

6= 0, (J 6= 0),

2
(

P+

2πN
+

df+(u)
du

)(
P−

2πN
+

df−(u)
du

)
−
(

p
2πN

+
df(u)
du

)2

= 0.
(2.31)

For the class of solutions of equation (2.24) such that

f(u) = f0 −
pu

2πN
, f+(u) = f+

0 − P+u

2πN
,
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with f−(u) arbitrary, equations (2.31) are not compatible: the second one implies J = 0.
This form of fµ(u), when substituted in equation (2.24), shows that this class of solutions
has P+ = p = 0, so that these longitudinal modes do not satisfy equation (2.29) and are
lost in the light-cone gauge where P+ 6= 0.

We will see in the following how to recover all these modes.

3. The Hamilton Approach.

In order to define a Poisson structure in the phase-space we will use the following
extension of the coordinates outside the interval (0, π), mainly in order to make contact
with the usual extension used in the literature on string models,xµ(σ, τ) = xµ(−σ, τ) = xµ(σ + 2nπ, τ),

Pµ(σ, τ) = Pµ(−σ, τ) = Pµ(σ + 2nπ, τ),
(3.1)

where n is an integer, with the points σ = 2nπ, for any n (or σ = (2n + 1)π, for any n),
corresponding to the boundary values xµ(0, τ) and Pµ(0, τ) (or xµ(π, τ) and Pµ(π, τ)) as
limit values from the open interval (0, π).

With the kind of boundary conditions we have chosen, and with this kind of extension
to the real axis, the functions x′

µ(σ, τ) and P ′
µ(σ, τ) will have in σi (i = 1, 2;σ1 = 0, σ2 =

π) a jump, not present in the o.g. This means that we must define the physical values
of these functions as limit value from the open interval (0, π), since the Fourier series will
converge pointwise to the mean value of the left and right limits at the end points, that is
to unphysical values.

Following reference [10] we introduce an even and odd delta function with period 2π:

∆±(σ, σ′) =
1
2π

∞∑
n=−∞

(
ein(σ−σ′) ± e−in(σ+σ′)

)
=

=
∞∑

n=−∞
(δ(σ − σ′ + 2nπ)± δ(σ + σ′ + 2nπ)) −→ δ(σ − σ′), for σ, σ′ ∈ (0, π).

(3.2)
∆± have the following properties

∆+(σ, σ′) = ∆+(−σ, σ′) = ∆+(σ′, σ) = ∆+(σ + 2nπ, σ′),

∆−(σ, σ′) = −∆−(−σ, σ′) = ∆−(σ′, σ) = ∆−(σ + 2nπ, σ′),
∂

∂σ
∆±(σ, σ′) = − ∂

∂σ′
∆∓(σ, σ′),∫ π

−π
dσ′f(σ′)∆±(σ′, σ) = f(σ)± f(−σ).

(3.3)

We introduce the following Poisson structure (ηµν = (1;−1,−1,−1)):

{xµ(σ, τ), P ν(σ′, τ)} = −ηµν∆+(σ, σ′) −→ −ηµνδ(σ − σ′), for σ, σ′ ∈ (0, π). (3.4)
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This definition implies a suitable definition of the functional derivative

δxµ(σ)
δxν(σ′)

=
δPµ(σ)
δP ν(σ′)

= ηµν∆+(σ, σ′).

More generally we must define the Poisson bracket for two canonical observables A(σ),
B(σ)

{A(σ), B(σ′)} =
∫ π

0

dσ̄

[
δA(σ)
δPµ(σ̄)

δB(σ′)
δxµ(σ̄)

− δA(σ)
δxµ(σ̄)

δB(σ′)
δPµ(σ̄)

]
. (3.5)

Since there can be a dependence on x′(σ), we must check if some boundary term is
present [28]. We will discuss this point in the following of this Section.

Some identities useful in the calculation of such Poisson brackets are given in Appendix
C.

The center-of-mass coordinates of the string are
Xµ(τ) =

1
2π

∫ π

−π

dσxµ(σ, τ),

Pµ =
1
2

∫ π

−π

dσPµ(σ, τ),
(3.6)

where Pµ is the conserved generator of the space-time translations.
Let us introduce the following relative coordinates{

yµ(σ, τ) = −x′
µ(σ, τ) = −yµ(−σ, τ),

Pµ(σ, τ) =
∫ σ

0
dσ′Pµ(σ′, τ)− σ

π
Pµ = −Pµ(−σ, τ) = Pµ(σ + 2nπ, τ), (3.7)

with the following properties
∫ π

−π
dσyµ(σ, τ) =

∫ π

−π
dσPµ(σ, τ) = 0,

Pµ(0) = Pµ(±π) = 0 →
∫ π

−π
dσP ′µ(σ, τ) = 0.

(3.8)

It may be checked that the coordinates (3.6) and (3.7) constitute a basis of canonical
variables  {X

µ, P ν} = −ηµν ,

{yµ(σ, τ),Pν(σ′, τ)} = −ηµν∆−(σ, σ′),
(3.9)

with all the other Poisson brackets vanishing.
The inverse formulae are

xµ(σ, τ) = Xµ(τ) +
1
2π

∫ π

−π

dσ1

∫ σ1

0

dσ2y
µ(σ2, τ)−

∫ σ

0

dσ2y
µ(σ2, τ),

Pµ(σ, τ) =
1
π

Pµ + P ′µ(σ, τ).
(3.10)
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Useful variables are

Aµ
±(σ, τ) = Aµ

∓(−σ, τ) = Pµ(σ, τ)±Nx′
µ(σ, τ) =

=
1
π

Pµ + P ′µ(σ, τ)∓Nyµ(σ, τ) =
∂

∂σ
Bµ
±(σ, τ),

(3.11)

Bµ
±(σ, τ) = −Bµ

∓(−σ, τ) =
σ

π
Pµ + Pµ(σ, τ)±Nxµ(σ, τ), (3.12)

where 
Bµ
±(σ + 2nπ, τ) = Bµ

±(σ, τ) + 2nPµ,

Bµ
±(π, τ)−Bµ

±(−π, τ) =
∫ π

−π
dσAµ

±(σ, τ) = 2Pµ.

In this definition of the Bµ
± we have put to zero the function of τ left arbitrary by the

defining equation (3.11). The Poisson brackets of the Aµ
± are

{Aµ
±(σ1, τ), Aν

±(σ2, τ)} = ∓Nηµν (∆′+(σ1, σ2) + ∆′−(σ1, σ2)) ,

{Aµ
±(σ1, τ), Aν

∓(σ2, τ)} = ∓Nηµν (∆′+(σ1, σ2)−∆′−(σ1, σ2)) ,
(3.13)

where
∆′±(σ1, σ2) =

∂

∂σ1
∆±(σ1, σ2).

The constraints implied by equation (2.6) areχ1(σ, τ) = χ1(−σ, τ) = P 2(σ, τ) + N2x′
2(σ, τ) ≈ 0,

χ2(σ, τ) = −χ2(−σ, τ) = P (σ, τ) · x′(σ, τ) ≈ 0,

(3.14)

or, equivalently,
χ±(σ, τ) = χ∓(−σ, τ) = A2

±(σ, τ) ≈ 0, (3.15)

where 
χ1 =

1
2

(χ+ + χ−) ,

χ2 =
1

4N
(χ+ − χ−) .

They satisfy the algebra {χ±(σ1, τ), χ±(σ2, τ)} = ∓2N (χ±(σ1, τ) + χ±(σ2, τ)) · (∆′+(σ1, σ2) + ∆′−(σ1, σ2)) ,

{χ+(σ1, τ), χ−(σ2, τ)} = −2N (χ+(σ1, τ) + χ−(σ2, τ)) · (∆′+(σ1, σ2)−∆′−(σ1, σ2)) .
(3.16)

Therefore the constraints are 1th-class, but they are in weak involution; the algebra (3.16)
is the universal Dirac algebra of reparametrization [4,29]. In the many-time approach of
the next Section a set of 1th-class constraints in strong involution are needed.
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In the finite-dimensional case their existence is ensured (at least locally) by theorems
about function groups [19][30], which however have no general extension to the infinite-
dimensional case. However, constraints in strong involution always exist when the original
constraints can be solved in terms of a subset of the canonical variables, and this is equiv-
alent to the use of the BRST method [19].

Here we will consider two possible solutions of the constraints. They are defined with
lightcone variables, as we wish to make contact with the non covariant approach to the
string. Other solutions are possible, and we will explore them elsewhere. In terms of the
following lightcone variables

A+
±(σ, τ) =

1√
2

(
A0
±(σ, τ) + A3

±(σ, τ)
)
,

A−±(σ, τ) =
1√
2

(
A0
±(σ, τ)−A3

±(σ, τ)
)
,

(3.17)

we may define the new constraints

χ̃
(+)
± (σ, τ) =

χ±(σ, τ)
2A+

±(σ, τ)
= A−±(σ, τ)−

~A2
±(σ, τ)

2A+
±(σ, τ)

≈ 0, if A+
±(σ, τ) 6= 0, (3.18)

or

χ̃
(−)
± (σ, τ) =

χ±(σ, τ)
2A−±(σ, τ)

= A+
±(σ, τ)−

~A2
±(σ, τ)

2A−±(σ, τ)
≈ 0, if A−±(σ, τ) 6= 0 (3.18′)

where ~A2 = (A1)2 + (A2)2.
These constraints are only weakly Poincaré invariant and are only locally defined, in

those regions of the constraints manifold χ±(σ, τ) ≈ 0 where the denominators do not
vanish. They are now in strong involution:

{
χ̃

(a)
± (σ, τ), χ̃(a)

± (σ′, τ)
}

= 0
(a = +,−){

χ̃
(a)
+ (σ, τ), χ̃(a)

− (σ′, τ)
}

= 0.

(3.19)

Let us remember that in order to fix an o.g. uniquely, usually one adds the following
gauge-fixing constraints (transverse light-cone gauge):

φ1(σ, τ) = x+(σ, τ)− q+ − P+

πN
τ ≈ 0,

φ2(σ, τ) = P+(σ, τ)− P+

π
≈ 0,

(3.20)

one may define the Dirac brackets [10] and select the physical transverse degrees of freedom.
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The classical Virasoro generators are

Ln =
1

4N

∫ π

−π

dσeinσχ+(σ) =
1

4N

∫ π

−π

dσe−inσχ−(σ) =⇒

=⇒ χ±(σ, τ) =
2N

π

+∞∑
n=−∞

e∓inσLn(τ),
(3.21)

with
{Lm, Ln} = i(n−m)Ln+m.

Solving equation (3.11) in terms of xµ(σ, τ) , we get

xµ(σ, τ) =
1

2N

(
Bµ

+(σ, τ)−Bµ
−(σ, τ)

)
=

1
2N

(
Bµ

+(σ, τ) + Bµ
+(−σ, τ)

)
, (3.22)

and, by comparison with equation (2.24), we may assert that 1
N Bµ

+(σ, τ) are the general-
ization to an arbitrary gauge of the o.g. functions Qµ(τ) = xµ(0, τ), which describe the
σ = 0 end point.

As the canonical Hamiltonian of the string vanishes, the Dirac Hamiltonian is

HD(τ) =
∫ π

0

dσ [λ1(σ, τ)χ1(σ, τ) + λ2(σ, τ)χ2(σ, τ)] =

=
∫ π

0

dσ [λ+(σ, τ)χ+(σ, τ) + λ−(σ, τ)χ−(σ, τ)] =

=
∫ π

−π

dσλ+(σ, τ)χ+(σ, τ) =

=
∫ π

−π

dσλ−(σ, τ)χ−(σ, τ),

(3.23)

with the following properties for the Dirac multipliers:λ1(σ, τ) = λ+(σ, τ) + λ−(σ, τ) = λ1(−σ, τ) = λ1(σ + 2nπ, τ),

λ2(σ, τ) = 2N (λ+(σ, τ)− λ−(σ, τ)) = −λ2(−σ, τ) = λ2(σ + 2nπ, τ),
(3.24)

The Hamilton equations are{
δxµ(σ, τ) = {xµ(σ, τ),HD} δτ ≈ [−2λ1(σ, τ)Pµ(σ, τ)− λ2(σ, τ)x′µ(σ, τ)] δτ,

δPµ(σ, τ) = {Pµ(σ, τ),HD} δτ ≈ − ∂

∂σ

[
2N2λ1(σ, τ)x′µ(σ, τ) + λ2(σ, τ)Pµ(σ, τ)

]
δτ.

(3.25)
Carefully performing the calculation, we may verify that boundary terms are absent,

as far as the physical values of δx and δP at σ = 0, π are taken as limit from the interior
of the interval (0, π), that is as σ → π− and σ → 0+.
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To be more precise, in the calculation of the r.h.s of the second equation (3.25), we
have a term like ∫ π

0

dσ′Πµ(σ′)
∂

∂σ′
∆+(σ, σ′),

which correctly gives − ∂

∂σ
Πµ(σ), if we remember that this last derivative must be inter-

preted as a distributional derivative. This means that the possible jumps of x′
µ, on which

Πµ depends (see below), will give δ-like contributions at σ = nπ for any integer n. This
is the price for having chosen the extension (3.1), with boundary conditions different from
those of the o.g. case.

In any case, these δ-like terms do not contribute to the physical values, since the
latters are obtained as limiting values from the inside of the (0, π) interval.

From the first equation (3.25) we get for λi
λ1(σ, τ) ≈

√
−h(σ, τ)

2Nx′2(σ, τ)
,

λ2(σ, τ) ≈ − ẋ(σ, τ) · x′(σ, τ)
x′2(σ, τ)

.

(3.26)

Inserting these in the definition (2.5) of Πµ(σ, τ) we get

Πµ(σ, τ) = 2N2λ1(σ, τ)x′µ(σ, τ) + λ2(σ, τ)Pµ(σ, τ), (3.27)

The variation of any canonical observable A, induced by HD is

δA(σ) = {A(σ),HD} δτ,

or

δA(σ) =
∫ π

0

dσ̄

[
δA(σ)
δxµ(σ̄)

δxµ(σ̄) +
δA(σ)
δPµ(σ̄)

δPµ(σ̄)
]

, (3.28)

as can be verified by inserting the expressions (3.25) for δx and δP .
Observe that the λi given by equations (3.26) appear undetermined at the end points.

Actually, they have a well defined limit, which can be recovered from a careful analysis of
the end points behaviour as discussed in the Appendix B.

In the o.g., we have λ1(σi, τ) < ∞ and λ2(σi, τ) = 0, or λ+(σi, τ) = λ−(σi, τ).
With the kind of boundary conditions we have chosen, the values at the end points of

the λi are not independent, as shown in Appendix B. This means that at these points the
two constraints (3.25) degenerate in a unique constraint. This fact can be seen as due to
the collinearity of x′

µ and ẋµ (or x′
µ and Pµ in the hamiltonian formalism) in σ = 0, π.

If we define

G[εi] =
∫ π

0

dσ (ε1(σ, τ)χ1(σ, τ) + ε2(σ, τ)χ2(σ, τ)) ,

with the εi(σ, τ) not satisfying the relation between λ1 and λ2 at the end points, this is
an improper constraint, i.e. it generates transformations which turn out to be not gauge
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transformations [23]: they change the physical state of the system, mapping one physical
solution onto a different physical solution.

Conversely, if the εi(σ, τ) satisfy equations (3.24), we get the following transformations{
δτ = δσ = 0
δ0x

µ(σ, τ) = −2ε1P
µ(σ, τ)− ε2(σ, τ)x′µ(σ, τ), (3.29)

If we use equation (2.5) to express Pµ(σ, τ), the variation of the action (2.1) induced
by this transformation turns out to be quasi-invariant under the canonical gauge transfor-
mations generated by the first-class constraints, that is

δS =
∫ τ2

τ1

dτ

∫ π

0

dσ∂αFα(σ, τ),

F 0(σ, τ) = −2N2ε(σ, τ)x′2(σ, τ),
F 1(σ, τ) = +2N2ε1(σ, τ)(ẋ(σ, τ) · x′(σ, τ))−

−Nε2(σ, τ)
√
−h(σ, τ).

(3.30)
These transformations are not the standard (σ, τ)-reparametrization transformations

(2.15), but a possible reformulation of the latter as canonical transformations. In the case
we would prefer to use the constraints χ̃

(a)
± (σ, τ), a = ±, of equations (3.17), it is easy to

define an analogous of HD, at least locally, over an interval of values σ ∈ (σ1, σ2) where
the denominators Aa

±(σ, τ) do not vanish:

H̃D(σ1,σ2)(τ) =
∫ σ2

σ1

dσ
[
λ̃

(a)
+ (σ, τ)χ̃(a)

+ (σ, τ) + λ̃
(a)
− (σ, τ)χ̃(a)

− (σ, τ)
]
. (3.31)

Let us remark again that the Poisson structure we have defined is only oriented to
the o.g. and to the gauges which can be reached from the orthonormal ones with (σ, τ)-
reparametrizations with non-vanishing Jacobian. Therefore the Patrascioiu longitudinal
modes do exist in this formulation, which is incompatible with regular coordinates xµ(σ, τ)
associated to an embedding (σ, τ) 7−→ xµ(σ, τ) [23], and actually they are contained in the
zeros of the functions A

(a)
± (σ, τ), a = ±, as we shall see in the following sections. The

locality of the many-time approach associated to the constraints χ̃
(a)
± (σ, τ) of the next

section is intimately connected to these modes with this Poisson structure.

4. The Many-time Approach.
and the Solutions of the Equations of Motion

in an Arbitrary Gauge.

This method was developed in reference [2] in order to study systems of n nonrelativis-
tic or relativistic particles with action-at-a-distance interactions described by n first-class
constraints in strong involution

{χa, χb} = 0 a, b = 1, ..., n, (4.1)

and for the general problem of a constrained system in [31].
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Following the Dirac’s approach [4], if xµa, Pµa, a = 1, ...n, are the canonical variables,
with {xµa, P ν

b } = −ηµνδa
b , ηµν ≡ (1,−1,−1,−1), the Hamilton equations with respect to

the Dirac Hamiltonian are
d

dτ
xµa(τ) = {xµa,HD} ≈

∑n
b=1 λb(τ) {xµa, χb} ,

d

dτ
Pµa(τ) = {Pµa,HD} ≈

∑n
b=1 λb(τ) {Pµa, χb} .

(4.2)

These equations can be solved only after the first step in fixing a gauge, i.e. after assigning
a set of multipliers λa(τ).

Another way to approach the problem of solving the system (4.2) is to introduce n
“times” τa formally defined through the equations

dτa = λa(τ)dτ, (4.3)

and by redefining xµa(τ) = x̃µa(τ1, ..., τn), Pµa(τ) = P̃µa(τ1, ..., τn), equations (4.2) are
replaced by the n-times Hamilton equations

∂xµa

∂τ b
= {xµa, χb} ,

∂Pµa

∂τ b
= {Pµa, χb} ,

(4.4)

whose integrability conditions are just equations (4.1). Each “time” τa has its own Hamil-
tonian. This formal derivation of the equations of motion can be justified in a more
rigorous way, obtaining them as characteristic equations of the constraint’s equations as in
[31]. Since the system (4.4) is autonomous, apart from an initial constant each parameter
τa is defined by the system (4.4) itself, and can eventually be eliminated in terms of some
physical coordinate.

The physical coordinates qµa(τa) in the configuration space are recovered [2] through
the Droz-Vincent conditions [32]{

{qµa, χb} = 0, when a 6= b,
qµa = xµa, when τ (a) = τ (a)(τ). (4.5)

The no-interaction theorem[33] stems from the requirement qµa = xµa when the times do
not satisfy τ (a) = τ (a)(τ).

When we have a set of first-class constraints in weak involution

{χa, χb} = Cc
ab(x, P )χc ≈ 0, (4.6)

equations (4.4), which are a direct consequence of definition (4.3), are no more integrable.
To recover integrable equations we have to replace the constraints χa with equivalent
constraints χ̃a satisfying equations (4.1). In the finite-dimensional case this is always
possible, at least locally, by solving the constraints with respect to some of the canonical
variables.
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In our case equations (3.16) solve the problem in light-cone coordinates, but the price
we pay is the loss of manifest Lorentz covariance and the fact that the theory is defined
only locally, where the denominators do not vanish.

We have two first class constraints for each value of σ 6= σi given by equation (3.18),so
that, according to equation (4.3), we have to introduce two “times” for each σ ∈ (0, π),
τ

(a)
± (σ), with associated Hamiltonians χ̃

(a)
± (σ). A 1-1 correspondence must be assumed

between any of these ”time” and the parameter τ .
The connection with the λ±(σ, τ) is

δτ
(a)
± (σ) = λ̃

(a)
± (σ, τ)δτ = 2A

(a)
± (σ, τ)λ±(σ, τ)δτ, a = ±, (4.7)

where a = ± are two possible choices of a pair of constraints equivalent to the pair χ±.
The “time functions” τ

(a)
± (σ), can be chosen such to satisfy equations (3.24):

τ
(a)
± (σ) = τ

(a)
∓ (−σ) = τ

(a)
± (σ + 2nπ). (4.8)

This is not compulsory; we may require it in order to agree with the usual form of the
solutions (2.24), where such extension is assumed.

With (4.8), when we work with σ ∈ (−π, π), we only need

τ
(a)
+ (σ), χ̃

(a)
+ (σ|τ (a)

± (σ)]

or
τ

(a)
− (σ), χ̃

(a)
− (σ|τ (a)

± (σ)],

according to equation (3.15). Observe that at the end points the functions τ
(a)
± (σ) can be

discontinuous. As for the physical coordinates, we will define the values of the parameters
in σ = 0, π as the limit from the open interval (0, π). This means that, by definition

{
τ±(0) ≡ τ±(0+),
τ±(π) ≡ τ±(π−), (4.9)

so the equation (4.8) implies {
τ±(0−) ≡ τ∓(0),
τ±(−π) ≡ τ∓(π). (4.10)

With these definitions it turns out that τ±(0) are two different values, in spite of what
could be apparent from (4.8).

Accordingly we redefine the canonical variables

xµ(σ, τ) −→ xµ(σ|τ (a)
± (σ)], Pµ(σ, τ) −→ Pµ(σ|τ (a)

± (σ)], σ ∈ (0, π),
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The new Hamilton equations become the following functional equations (where the
constraints χ̃±± are defined in eq. (3.18):

δxµ(σ|τ (a)
± (σ)]

δτ
(a)
± (σ′)

=
{

xµ(σ|τ (a)
± (σ)], χ̃(a)

± (σ′|τ (a)
± (σ)]

}
≈

≈−
Pµ(σ′|τ (a)

± (σ)]±Nx′µ(σ′|τ (a)
± (σ)]

A
(a)
± (σ′|τ (a)

± (σ)]
∆+(σ, σ′),

δPµ(σ|τ (a)
± (σ)]

δτ
(a)
± (σ′)

=
{

Pµ(σ|τ (a)
± (σ)], χ̃(a)

± (σ′|τ (a)
± (σ)]

}
≈

≈±N
Pµ(σ′|τ (a)

± (σ)]±Nx′µ(σ′|τ (a)
± (σ)]

A
(a)
± (σ′|τ (a)

± (σ)]

∂

∂σ′
∆+(σ, σ′),

(4.11)

whose integrability is guaranteed by equations (3.17). When σ′ ∈ (−π, π), the equations
in τ

(a)
− (σ′) become those in τ

(a)
+ (σ′), with σ′ −→ −σ′.

We shall study only those equations with a = +, with the constraints (3.18), since it
is possible to obtain the solutions for a = − merely interchanging the light-cone indices
+ ↔ −. From now on we shall therefore drop the suffix (a).

The first line of equations (4.11) implies
{

xµ(σ), χ̃(a)
± (σ′)

}
= 0 for σ 6= σ′; if we

compare this result with the Droz-Vincent equations (4.5), we see that in this infinitely-
dimensional case the xµ(σ, τ) can be identified with the physical coordinates qµ(σ, τ), so
there is no room for the No-Interaction theorem [33].

.
Instead of equations (4.11) it is convenient to integrate the equations for Aµ(σ|τ±(σ)].

If we restrict σ, σ′ to the interval (0, π), so that ∆±(σ, σ′) = δ(σ ∓ σ′), we have:
δAµ

+(σ|τ±]
δτ−(σ′)

= 0

δAµ
−(σ|τ±]

δτ+(σ′)
= 0

=⇒


Aµ

+ = Aµ
+(σ|τ+]

Aµ
− = Aµ

−(σ|τ−].
(4.12)

The equations for A+
+(σ|τ+] and A+

−(σ|τ−] are
δA+

+(σ|τ+]
δτ+(σ′)

= −2Nδ′(σ − σ′)

δA+
−(σ|τ−]

δτ−(σ′)
= 2Nδ′(σ − σ′),

(4.13)

and their solution are 
A+

+(σ|τ+] = −2N
d

dσ
[τ+(σ)− c+(σ)]

A+
−(σ|τ−] = 2N

d

dσ
[τ−(σ)− c−(σ)] ,

(4.14)
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where c±(σ) are a double infinity of “integration constants” which do not depend on τ±.
The remaining equations are

δ ~A+(σ|τ+]
δτ+(σ′)

= −2N
~A+(σ′|τ+]
A+

+(σ′|τ+]
δ′(σ − σ′)

δA−+(σ|τ+]
δτ+(σ′)

≈ −2N
A−+(σ′|τ+]
A+

+(σ′|τ+]
δ′(σ − σ′),

(4.15′)

and 
δ ~A−(σ|τ−]
δτ−(σ′)

= 2N
~A−(σ′|τ−]
A+
−(σ′|τ−]

δ′(σ − σ′)

δA−−(σ|τ−]
δτ−(σ′)

≈ 2N
A−−(σ′|τ−]
A+
−(σ′|τ−]

δ′(σ − σ′),
(4.15”)

where in the equations for A−± we have used the constraints χ̃± ≈ 0. If we use equations
(4.13), we can write all the equations (4.14) under the same form

δf(σ|τ ]
δτ(σ′)

=
f(σ′|τ ]

τ ′(σ′)− c′(σ′)
δ′(σ − σ′).

Introducing the notation T (σ) = τ(σ)− c(σ), the solution of this equation is

f(σ|τ ] = T ′(σ)G(T (σ)) = T ′(σ)
dF (T )

dT

∣∣∣∣
T=T (σ)

=
d

dσ
F (T (σ)),

where G is an arbitrary function, then written as the derivative of another arbitrary func-
tion F . Indeed we have

δf(σ|τ ]
δτ(σ′)

=
δ

δτ(σ′)
[T ′(σ)G(T (σ))] = G(T (σ))δ′(σ − σ′) + T ′(σ)

dG(T )
dT

∣∣∣∣
T=T (σ)

δ(σ − σ′) =

=
d

dσ
[G(T (σ))δ(σ − σ′)] = G(T (σ′))δ′(σ − σ′) =

f(σ′|τ ]
T ′(σ′)

δ′(σ − σ′).

Therefore the solutions for Aµ
± =

d

dσ
Bµ
±, see equation (3.10), are

A+
+(σ|τ+] = −2NT ′+(σ),

~A+(σ|τ+] = −2N
d

dσ
~F+(T+(σ)),

A−+(σ|τ+] = −2N
d

dσ
F−+ (T+(σ)),

A+
−(σ|τ−] = 2NT ′−(σ),

~A−(σ|τ−] = 2N
d

dσ
~F−(T−(σ)),

A−−(σ|τ−] = 2N
d

dσ
F−− (T−(σ)),

(4.16)
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or 
B+

+(σ|τ+] = −2NT+(σ),
~B+(σ|τ+] = −2N ~F+(T+(σ)),
B−+(σ|τ+] = −2NF−+ (T+(σ)),
B+
−(σ|τ−] = 2NT−(σ),

~B−(σ|τ−] = 2N ~F−(T−(σ)),
B−−(σ|τ−] = 2NF−− (T−(σ)),

(4.17)

where we readsorbed an integration constant in the c± ’s and the F± ’s in the expressions
for Bµ

±, and we have defined

T±(σ) = τ±(σ)− c±(σ) = ∓ 1
2N

B+
±(σ). (4.18)

The constraints χ̃± ≈ 0 impose the following restrictions over the functions F−± (T±(σ)):

F ′−± (T±(σ)) =
d

dT±
F−± (T±)

∣∣∣∣
T±=T±(σ)

=
1
2

(
d

dT±
~F±(T±)

)2
∣∣∣∣∣
T±=T±(σ)

=
1
2

[
~F ′±(T±(σ))

]2
(4.19)

From Pµ(σ) = 1
2

[
Aµ

+(σ) + Aµ
−(σ)

]
and xµ(σ) = 1

2N

[
Bµ

+(σ)−Bµ
−(σ)

]
, we get the final

solutions:

x+(σ|τ+, τ−] = −[T+(σ) + T−(σ)],

~x (σ|τ+, τ−] = −[~F+(T+(σ)) + ~F−(T−(σ))],

x−(σ|τ+, τ−] = −[F−+ (T+(σ)) + F−− (T−(σ))] =

= x−(0|τ+, τ−]− 1
2
∫ σ

0
dσ̄[T ′+(σ̄)~F ′2+ (T+(σ̄)) + T ′−(σ̄)~F ′2− (T−(σ̄))];

(4.20′)



P+(σ|τ+, τ−] = −N [T ′+(σ)− T ′−(σ)],

~P (σ|τ+, τ−] = −N
d

dσ
[~F+(T+(σ))− ~F−(T−(σ))],

P−(σ|τ+, τ−] = −N
d

dσ
[F−+ (T+(σ))− F−− (T−(σ))] =

= −N

2
[T ′+(σ)~F ′2+ (T+(σ))− T ′−(σ)~F ′2− (T−(σ))].

(4.20”)

The total momentum is
P+ = −N (T+(π)− T+(0)− [T−(π)− T−(0)]) ,
~P = −N

(
~F+(T+(π))− ~F+(T+(0))−

[
~F−(T−(π))− ~F−(T−(0))

])
,

P− = −N

2
∫ π

0
dσ
[
T ′+(σ)~F ′2+ (T+(σ))− T ′−(σ)~F ′2− (T−(σ))

]
.

(4.21)
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Let us define {
T1(σ) = 1

2 (T+(σ) + T−(σ)),
T2(σ) = 1

2 (T+(σ)− T−(σ)), (4.22)

so that from equation (4.20’) and (4.20”){
x+(σ) = −2T1(σ),
P+(σ) = −2NT ′2(σ).

(4.23)

We have to choose a class of functions T1,2(σ) consistent with the various assumed
properties of the canonical variables. In particular with those defined in equations (3.1),
(3.8), (3.12). This means that we must choose

T1(−σ) = T1(σ), T2(−σ) = −T2(σ),
T1(σ + 2nπ) = T1(σ),
T2(σ + 2nπ) = T2(σ)− nP+

N ,
(4.24)

and in particular from equation (3.8)

lim
σ→0+

T2(σ) = 0, (4.25)

since P+(0) = 0 implies, from equation (3.11)

(B+
+(σ) + B+

−(σ))|σ=0 = 0. (4.26)

From the conditions (4.24) it follows that T1(σ) is an even continuous periodic function
of σ (with period 2π), with derivatives possibly discontinuous in σ = nπ. Instead T2(σ) is
a continuous function, with continuous derivative, but quasi periodic as shown in equation
(4.24).

In particular we get

T2(π)− T2(−π) = −P+

N
, (4.27)

and, since T2(0) = 0, and T2(−σ) = −T2(σ), we get

T2(π) = −P+

2N
. (4.28)

With this condition we may check that the expression for P+ given by equation (4.21)
is correct.

This in turn implies that τ2(0) and τ2(π) are fixed, that is they are not ”free times”:

δτ2(σ)|σ=0,π = 0. (4.29)

Since δτ1 and δτ2 determine the multipliers λ1 and λ2 in the Dirac hamiltonian, see
equation (3.23), this fact means that not both the λ1, λ2 are free at the end points.
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Taking into account the relation between the τ1,2 and the λ1,2 as given in equation
(4.7), it is possible to verify that δτ2(0)|σ=0,π is exactly the relation (B.21) between λ1 and
λ2 of Appendix B.

The use of the light-cone variables requires P+ 6= 0 (for a = −, P− 6= 0) and this fact
puts restrictions on c±(0), c±(π). From equation (4.18), (4.8) and (3.11) we get (with the
already explained meaning of the limit in σ = 0){

c±(σ) = c∓(−σ) =⇒ c+(0) = c−(0);
c±(σ + 2nπ) = c±(σ)± n

N
P+.

(4.30)

From equations (4.21) and (4.30) we get

P+

N
= c+(π)− c−(π). (4.31)

Therefore T±(σ) satisfies{
T±(σ) = T∓(−σ),
T±(σ + 2nπ) = T±(σ)∓ n

N
P+,

=⇒

=⇒

{
T+(0) = T−(0),

T+(π) = T−(−π) = T+(−π)− P+

N
= T−(π)− P+

N
,

(4.32)

where the equation (4.9) was used. Then equations (4.32), (4.16) and (3.11) imply

~F±(T±(σ + 2nπ)) =~F±(T±(σ)∓ n

N
P+) = ∓ 1

2N
~B±(σ + 2nπ) =

= ∓ 1
2N

~B±(σ)∓ n

N
~P = ~F±(T±(σ))∓ n

N
~P ,

(4.33′)

F−± (T±(σ + 2nπ)) =F−± (T±(σ)∓ n

N
P+) = ∓ 1

2N
B−±(σ + 2nπ) =

= ∓ 1
2N

B−±(σ)∓ n

N
P− = F−± (T±(σ))∓ n

N
P−,

(4.33′′)

so that
d

dσ
~F±

(
T±(σ)∓ n

N
P+
)

=
d

dσ
~F±(T±(σ)).

Through equality Bµ
+(σ) = −Bµ

−(−σ) and equation (4.16), at last we obtain
~F+(T+(σ)) = ~F−(T−(−σ)) = ~F−(T+(σ)),

F−+ (T+(σ)) = F−− (T−(−σ)) = F−− (T+(σ)),
=⇒


~F+ = ~F− ≡ ~F ,

F−+ = F−− ≡ F−.

(4.34)
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We are now able to rewrite the solutions (4.20), (4.21) in the following final form:
x+(σ|τ+, τ−] = −[T+(σ) + T−(σ)],
~x (σ|τ+, τ−] = −[~F (T+(σ)) + ~F (T−(σ))],
x−(σ|τ+, τ−] = −[F−(T+(σ)) + F−(T−(σ))] =

= x−(0|τ+, τ−]− 1
2
∫ σ

0
dσ̄[T ′+(σ̄)~F ′2(T+(σ̄)) + T ′−(σ̄)~F ′2(T−(σ̄))];

(4.35′)



P+(σ|τ+, τ−] = −N [T ′+(σ)− T ′−(σ)],

~P (σ|τ+, τ−] = −N
d

dσ
[~F (T+(σ))− ~F (T−(σ))],

P−(σ|τ+, τ−] = −N
d

dσ
[F−(T+(σ))− F−(T−(σ))] =

= −N

2
[T ′+(σ)~F ′2(T+(σ))− T ′−(σ)~F ′2(T−(σ))];

(4.35′′)


P+ = N [c+(π)− c−(π)] ,
~P = −N

[
~F (T+(π))− ~F (T−(π))

]
,

P− = −N

2
∫ π

0
dσ
[
T ′+(σ)~F ′2(T+(σ))− T ′−(σ)~F ′2(T−(σ))

]
,

(4.36)

where T±(σ) = τ±(σ)−c±(σ), ~F is an arbitrary function and F ′−(u) = 1
2

~F ′2(u). Moreover,
using equations (4.32) and (4.33) we get consistently

P 2(σ|τ+, τ−] = N2T ′+(σ)T ′−(σ)
[
2~F ′(T+(σ)) · ~F ′(T−(σ)) −

− ~F ′2(T+(σ))− ~F ′2(T−(σ))
]

−→ 0,
(4.37)

for σ −→ σi.
In order to define a Cauchy problem for the many-time equations (4.11), let us put

c±(σ) = τ̄±(σ)± 1
2N

B̄+
±(σ) =⇒ T±(σ) = τ±(σ)− τ̄±(σ)∓ 1

2N
B̄+
±(σ). (4.38)

If we assign the following initial data at the “times” τ̄±(σ):{
xµ(σ|τ+τ−]|τ±=τ̄±

= x̄µ(σ)
Pµ(σ|τ+τ−]|τ±=τ̄±

= P̄µ(σ), (4.39)

with x̄µ(σ), P̄µ(σ) satisfying the constraints χ̃±(σ) ≈ 0, we obtain for τ± → τ̄±: B+
±(σ) →

B̄+
±(σ), where

B̄µ
±(σ) =

σ

π
P̄µ + P̄µ(σ)±Nx̄µ(σ)

and
Āµ(σ) =

d

dσ
B̄µ(σ) = P̄µ(σ)±Nx̄′µ(σ).
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If we remember that 
xµ(σ) =

1
2N

(Bµ
+(σ)−Bµ

−(σ)),

Pµ(σ) =
1
2
(Aµ

+(σ) + Aµ
−(σ)),

we get

xµ(σ|τ+, τ−]
∣∣∣
τ±=τ̄±

=
1

2N

{
B̄µ

+[B̄+
+
−1(−2NT+(σ))]− B̄µ

−[B̄+
−
−1(2NT−(σ))]

}∣∣∣
τ±=τ̄±

=

=x̄µ(σ),

Pµ(σ|τ+, τ−]
∣∣∣
τ±=τ̄±

=
1
2

d

dσ

{
B̄µ

+[B̄+
+
−1(−2NT+(σ))] + B̄µ

−[B̄+
−
−1(2NT−(σ))]

}∣∣∣
τ±=τ̄±

=

=P̄µ(σ).
(4.40)

Remembering equation (4.35), we make the following identification:
~F (T±(σ)) = ∓ 1

2N
~̄B±
[
B̄+
±
−1(∓2NT±(σ))

]
,

F−(T±(σ)) = ∓ 1
2N

B̄−±
[
B̄+
±
−1(∓2NT±(σ))

]
.

(4.41)

As shown in equation (3.25), in the usual o.g., fixed by the constraints (3.19), the Dirac
multipliers assume the value λ±(σ, τ) = − 1

4N . Equation (4.7) then implies λ̃
(+)
± (σ, τ) =

− 1
2N A+

±(σ, τ). With the λ̃
(+)
± (σ, τ) fixed only the evolution in τ is left. This means that

τ±(σ) must become function of τ ,

τo.g.
± (σ) = f±(σ, τ),

with f±(σ, τ) a given function, and equation (4.7) becomes a condition for the f±s:

δτo.g.
± (σ)
δτ

=
∂f±(σ, τ)

∂τ
=− 1

2N
A+
±(σ|τo.g.

± ] = ± ∂

∂σ
T o.g.
± (σ, τ) =

=± ∂

∂σ
(f±(σ, τ)− c±(σ)) = ±∂f±(σ, τ)

∂σ
∓ c′±(σ),

(4.42)

where we have used the solutions (4.16) in order to express A+
± in terms of f±. The

solutions of equation (4.42) may be written, for later convenience, in the form

T o.g.
± (σ, τ) = f±(σ, τ)− c±(σ) = c± + d± · (τ ± σ) + g±(τ ± σ), (4.43)

where c±, d± are constants. Equations (4.32) imply{
T o.g.
± (σ, τ) = T o.g.(τ ± σ) = c− P+

2πN
(τ ± σ) + g(τ ± σ),

g(u + 2π) = g(u).
(4.44)
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Equations (2.24) may be recovered from equations (4.35) with the positions

c = − q+

2N
,

f+(u) = −g(u),

~f(u) = − ~q

2N
−

~Pu

2πN
− ~F

[
− q+

2N
− P+u

2πN
+ g(u)

]
,

f−(u) = − q−

2N
− P−u

2πN
− F−

[
− q+

2N
− P+u

2πN
+ g(u)

]
,

(4.45)

where fµ(u + 2π) = fµ(u). We may similarly recover the o.g. condition (2.25),(
Pµ

2πN
+

dfµ(u)
du

)2

= 0,

from F ′−(u) = 1
2

~F ′2(u), which follows directly from imposing the constraints χ̃
(+)
± ≈ 0.

Moreover we see that

1
N

Bµ
+(σ|τo.g.

+ ] =
1
N

Pµ(σ|τo.g.
+ , τo.g.

− ] + x′µ(σ|τo.g.
+ , τo.g.

− ]

evaluated by means of the solutions (4.35) coincides with Qµ(τ + σ) = xµ(0, τ + σ) and
that Pµ(σ|τo.g.

+ , τo.g.
− ] −→ Nẋµ(σ, τ), as expected.

If we only fix the two multipliers λ±(σ, τ) =− 1
4N , without adding the gauge-fixing con-

straints (3.19) the gauge is not completely fixed yet. The residual gauge-freedom consists
in the conformal transformations connecting every possible orthonormal parametrization.
Here this residual gauge-freedom is represented by the arbitrariness of the function g in
equation (4.44). As usually done in gauge field theory, we fix the residual gauge through
boundary conditions; we get from equations (4.35) and (4.44)

x+(σ, τ) = q+ +
P+τ

πN
+ g(τ + σ) + g(τ − σ),

P+(σ, τ) =
P+

N
−N

∂

∂σ
[g(τ + σ)− g(τ − σ)] =

P+

N
−N

∂

∂τ
[g(τ + σ) + g(τ − σ)],

and it is therefore sufficient to assign as a boundary condition for instance:

x+(0, τ) = Q+(τ) = q+ +
P+τ

πN
+ 2g(τ) = h(τ).

This implies the following gauge-fixing constraints with well defined associated Dirac brack-
ets: 

x+(σ, τ)− 1
2
[h(τ + σ) + h(τ − σ)] = 0,

P+(σ, τ)− 2P+

π
+

N

2
∂

∂τ
[h(τ + σ) + h(τ − σ)] = 0.

(4.46)
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We recover equations (3.19) if we choose h(τ) = q++
P+τ

πN
, i.e. g(τ) = 0. In this particular

gauge we get 

1
N

B+
±(σ|τ±] −→ ±Q+(τ ± σ) = ±

[
q+ +

P+

πN
(τ ± σ)

]
,

P+(σ|τ±] −→ P+

π
,

A+
±(σ|τ±] −→ P+

π
.

(4.47)

Now let us look when the denominators of the constraints χ̃
(+)
± (σ, τ) vanish. We start

with the solutions (4.35)

A+
±(σ|τ (+)

± ] =∓ 2N
d

dσ
T

(+)
± (σ) = ∓2N

[
dτ

(+)
± (σ)
dσ

−
dc

(+)
± (σ)
dσ

]
= 0, (4.48′)

A−±(σ|τ (−)
± ] =∓ 2N

d

dσ
T

(−)
± (σ) = ∓2N

[
dτ

(−)
± (σ)
dσ

−
dc

(−)
± (σ)
dσ

]
= 0, (4.48′′)

where equation (4.48”) corresponds to the vanishing of the denominators of χ̃
(−)
± (σ, τ).

The solution of equations (4.48) is τ
(a)
± (σ) = c

(a)
± (σ) + K

(a)
± (this is why in equation (4.38)

we could not put τ̄± = c±). If we now consider the Patrascioiu modes related to equation
(2.31), i.e. 

x−(σ, τ) = q− +
P−

πN
τ + f−(τ + σ) + f−(τ − σ),

x+(σ, τ) = q+ + 2f+
0 ,

~x(σ, τ) = ~q + 2~f0,
P−(σ, τ) = Nẋ−(σ, τ) =

P−

πN
+ ḟ−(τ + σ) + ḟ−(τ − σ),

P+(σ, τ) = Nẋ+(σ, τ) = 0,
~P (σ, τ) = N~̇x(σ, τ) = 0,

(4.49)

we get A+
±(σ, τ) = P+(σ, τ) ± Nx′+(σ, τ) = 0 (similarly, A−± = 0 for the modes with

P− = ~P = 0). In our case, from equation (4.49) we get A−±(σ, τ) = 1
π P−+2Nḟ−(τ±σ) 6= 0

and we can use the constraints χ̃
(−)
± (σ, τ) to describe this solution.

The conclusion is that the open manifold of the string needs more than two charts
to be described with the many-time approach. The two main charts are i) A+

±(σ, τ) 6= 0,
ii) A−±(σ, τ) 6= 0. In the former we use χ̃

(+)
± , in the latter χ̃

(−)
± and, where the two charts

overlap, it is possible to make the transition from one map to the other by means of
a canonical transformation. Once we have chosen one of the two main charts, all the
Patrascioiu modes can be described in the nonoverlapping part of the other chart.

But there are cases in which the denominators of both χ̃
(+)
± , χ̃

(−)
± vanish, so that

neither of the two charts are suitable. We may study these sectors by means of the original
constraints χ± ≈ 0:

27



1) A−±(σ, τ) = A+
±(σ, τ) = 0; then χ± = 0 implies x′µ(σ, τ) = Pµ(σ, τ) = 0. The

solutions are {
xµ(σ, τ) = fµ(τ), with fµ arbitrary
Pµ(σ, τ) = 0.

(4.50)

2) A+
±(σ, τ) = A−−(σ, τ) = 0; together with χ± = 0 they imply P+(σ, τ) = x′+(σ, τ) =

~P (σ, τ) = ~x′(σ, τ) = P−(σ, τ)−Nx′−(σ, τ) = 0, while P−(σ, τ)+Nx′−(σ, τ) = 2P−(σ, τ) =
2Nx′−(σ, τ) is arbitrary. The solutions are

x+(σ, τ) = f+(τ)
~x(σ, τ) = ~f(τ)
x−(σ, τ) = f−(σ, τ) with fµ arbitrary
P+(σ, τ) = ~P (σ, τ) = 0
P−(σ, τ) = Nf ′−(σ, τ).

(4.51)

3) A+
±(σ, τ) = A−+(σ, τ) = 0; with χ± = 0, this imply P+(σ, τ) = x′+(σ, τ) = ~P (σ, τ) =

~x′(σ, τ) = P−(σ, τ)+Nx′−(σ, τ) = 0, P−(σ, τ)−Nx′−(σ, τ) = 2P−(σ, τ) = −2Nx′−(σ, τ)
arbitrary. The solutions are

x+(σ, τ) = f+(τ)
~x(σ, τ) = ~f(τ)
x−(σ, τ) = f−(σ, τ) with fµ arbitrary
P+(σ, τ) = ~P (σ, τ) = 0
P−(σ, τ) = −Nf ′−(σ, τ).

(4.52)

4) A−±(σ, τ) = A+
−(σ, τ) = 0; with χ± = 0, this imply P−(σ, τ) = x′−(σ, τ) = ~P (σ, τ) =

~x′(σ, τ) = P+(σ, τ) − Nx′+(σ, τ) = 0, P+(σ, τ) + Nx′+(σ, τ) = 2P+(σ, τ) = 2Nx′+(σ, τ)
arbitrary. The solutions are

x+(σ, τ) = f+(σ, τ)
~x(σ, τ) = ~f(τ)
x−(σ, τ) = f−(τ) with fµ arbitrary
P−(σ, τ) = ~P (σ, τ) = 0
P+(σ, τ) = +Nf ′+(σ, τ).

(4.53)

5) A−±(σ, τ) = A+
+(σ, τ) = 0; with χ± = 0, this imply P−(σ, τ) = x′−(σ, τ) = ~P (σ, τ) =

~x′(σ, τ) = P+(σ, τ) + Nx′+(σ, τ) = 0, P+(σ, τ)−Nx′+(σ, τ) = 2P+(σ, τ) = −2Nx′+(σ, τ)
arbitrary. The solutions are

x+(σ, τ) = f+(σ, τ)
~x(σ, τ) = ~f(τ)
x−(σ, τ) = f−(τ) with fµ arbitrary
P−(σ, τ) = ~P (σ, τ) = 0
P+(σ, τ) = −Nf ′+(σ, τ).

(4.54)
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6) A+
−(σ, τ) = A−−(σ, τ) = 0; with χ± = 0, this imply Pµ(σ, τ) = Nx′µ(σ, τ);

Pµ(σ, τ) = + Nx′µ(σ, τ) = 2Pµ(σ, τ) = 2Nx′µ(σ, τ) arbitrary. The solutions are{
xµ(σ, τ) = fµ(σ, τ) with fµ arbitrary
Pµ(σ, τ) = Nf ′µ(σ, τ). (4.55)

7) A+
+(σ, τ) = A−+(σ, τ) = 0; with χ± = 0, this imply Pµ(σ, τ) = −Nx′µ(σ, τ);

Pµ(σ, τ)− Nx′µ(σ, τ) = 2Pµ(σ, τ) = −2Nx′µ(σ, τ) arbitrary. The solutions are{
xµ(σ, τ) = fµ(σ, τ) with fµ arbitrary
Pµ(σ, τ) = −Nf ′µ(σ, τ). (4.56)

8) A+
−(σ, τ) = A−+(σ, τ) = 0; with χ± = 0, this imply P+(σ, τ) = Nx′+(σ, τ);

P−(σ, τ) = −Nx′−(σ, τ); ~P (σ, τ) = ~x′(σ, τ) = 0; P+(σ, τ) + Nx′+(σ, τ) = 2P+(σ, τ) =
2Nx′+(σ, τ) and P−(σ, τ)−Nx′−(σ, τ) = 2P−(σ, τ) = −2Nx′−(σ, τ) arbitrary. The solu-
tions are 

x+(σ, τ) = f+(σ, τ)
~x(σ, τ) = ~f(τ)
x−(σ, τ) = f−(σ, τ) with fµ arbitrary
P+(σ, τ) = Nf ′+(σ, τ)
~P (σ, τ) = 0
P−(σ, τ) = −Nf ′−(σ, τ).

(4.57)

9) A+
+(σ, τ) = A−−(σ, τ) = 0; with χ± = 0, this imply P+(σ, τ) = −Nx′+(σ, τ);

P−(σ, τ) = Nx′−(σ, τ); ~P (σ, τ) = ~x′(σ, τ) = 0; P+(σ, τ) − Nx′+(σ, τ) = 2P+(σ, τ) =
−2Nx′+(σ, τ) and P−(σ, τ) + Nx′−(σ, τ) = 2P−(σ, τ) = 2Nx′−(σ, τ) arbitrary. The solu-
tions are 

x+(σ, τ) = f+(σ, τ)
~x(σ, τ) = ~f(τ)
x−(σ, τ) = f−(σ, τ) with fµ arbitrary
P+(σ, τ) = −Nf ′+(σ, τ)
~P (σ, τ) = 0
P−(σ, τ) = Nf ′−(σ, τ).

(4.58)

These exceptional cases correspond to the following kinds of motion: i) case (1) is the
exceptional Lorentz orbit Pµ = 0; ii) cases (2)-(5) correspond to P 2 = 0, Pµ(σ)//x′(σ);
i.e. they are massless longitudinal motions; iii) cases (6)-(9) correspond to P 2 6= 0,
Pµ(σ)//x′(σ), i.e. they are massive longitudinal motions.

We have completed the analysis of the solutions of the functional equations of motion,
and of the various charts where they are defined. As already said in the introduction this
is a preliminary and necessary step towards the search of a complete set of observables,
which will be the argument of a subsequent paper.

One point which would deserve a separate analysis is whether the set of charts previ-
ously found does constitute an atlas of the constraint manyfold; another point of interest
is how to make a right identification of how many kinds of not diffeomorphic gauge orbits
exist, taking also into account the Lorentz orbits structure of the manifold.
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Appendix A.

Let us look for a reparametrization

ζα → ζ̃α(ζ), (ζ0 = τ, ζ1 = σ),

with

J = det ‖ ∂ζ̃α

∂ζβ
‖6= 0,

which change a given induced metric hαβ(ζ) into an orthonormal gauge metric

h̃αβ(ζ̃) = ˙̃x
2
(ζ̃)ηαβ = eφ̃ηαβ .

As we have

h̃αβ(ζ̃) =
∂ζ̃α

∂ζγ

∂ζ̃β

∂ζδ
hγδ(ζ), (A.1)

from
h̃00 + h̃11 = h̃01 = 0

we get the two equations 
(

∂ζ̃0

∂ζα

∂ζ̃0

∂ζβ
+

∂ζ̃1

∂ζα

∂ζ̃1

∂ζβ

)
hαβ = 0,

∂ζ̃0

∂ζα

∂ζ̃1

∂ζβ
hαβ = 0.

(A.2)

By taking their sum and difference and if

∂1ζ̃
0 6= ±∂1ζ̃

1 (∂0 =
∂

∂ζ0
, ∂1 =

∂

∂ζ1
) :

we get 
h00

(
∂0ζ̃

0 + ∂0ζ̃
1

∂1ζ̃0 + ∂1ζ̃1

)2

+ 2h01

(
∂0ζ̃

0 + ∂0ζ̃
1

∂1ζ̃0 + ∂1ζ̃1

)
+ h11 = 0,

h00

(
∂0ζ̃

0 − ∂0ζ̃
1

∂1ζ̃0 − ∂1ζ̃1

)2

+ 2h01

(
∂0ζ̃

0 − ∂0ζ̃
1

∂1ζ̃0 − ∂1ζ̃1

)
+ h11 = 0.

(A.3)

The equation
h00z2 + 2h01z + h11 = 0

has the solutions
z1 =

1
h00

(
−h01 −

√
(h01)2 − h00h11

)
=

1
h11

(
h01 −

√
−h
)

=
(ẋ · x′)−

√
−h

x′2
,

z2 =
1

h00

(
−h01 +

√
(h01)2 − h00h11

)
=

1
h11

(
h01 +

√
−h
)

=
(ẋ · x′) +

√
−h

x′2
.

(A.4)
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Therefore equations (A.3) have two sets of possible solutions with J 6= 0 ∂0ζ̃
0 + ∂0ζ̃

1 = z1(∂1ζ̃
0 + ∂1ζ̃

1),

∂0ζ̃
0 − ∂0ζ̃

1 = z2(∂1ζ̃
0 − ∂1ζ̃

1),
(A.5′)

 ∂0ζ̃
0 + ∂0ζ̃

1 = z2(∂1ζ̃
0 + ∂1ζ̃

1),

∂0ζ̃
0 − ∂0ζ̃

1 = z1(∂1ζ̃
0 − ∂1ζ̃

1).
(A.5′′)

If we put {
ζ̃0 + ζ̃1 = F+(ζ),
ζ̃0 − ζ̃1 = F−(ζ),

(A.6)

equations (A.5) become {
∂0F

+ − z1(ζ)∂1F
+ = 0,

∂0F
− − z2(ζ)∂1F

− = 0,
(A.7′){

∂0F
+ − z2(ζ)∂1F

+ = 0,
∂0F

− − z1(ζ)∂1F
− = 0,

(A.7′′)

Let the associated characteristic equations dζ0 = − dζ1

zi(ζ)
have the solutions

ρi(ζ) = ci

so that
∂0ρi = zi∂1ρi.

This implies that the solutions of equations (A.7’) (or, respectively, (A.7”)) are
∂0F

+(ρ1(ζ)) and ∂0F
−(ρ2(ζ)) (or ∂0F

+(ρ2(ζ)) and ∂0F
−(ρ1(ζ))) with F± arbitrary func-

tions. Therefore we have in general two sets of solutions to our original problem:
τ̃ = ζ̃0(ζ) =

1
2

[F+(ρ1(ζ)) + F−(ρ2(ζ))] ,

σ̃ = ζ̃1(ζ) =
1
2

[F+(ρ1(ζ))− F−(ρ2(ζ))] ,
(A.8′)


τ̃ = ζ̃0(ζ) =

1
2

[F+(ρ2(ζ)) + F−(ρ1(ζ))] ,

σ̃ = ζ̃1(ζ) =
1
2

[F+(ρ2(ζ))− F−(ρ1(ζ))] .
(A.8′′)

If for instance the original hαβ was already in an orthonormal gauge (hαβ = ẋ2ηαβ =
eφηαβ), we have z1 = 1, z2 = −1 and ρ1(ζ) = τ + σ, ρ2(ζ) = τ − σ. Equations (A.8’)
and (A.8”) give the reparametrizations that leave invariant a metric of the form eφηαβ ,
apart from a conformal rescaling φ → φ̃. These are the conformal transformations: (A.8’)
gives the transformations connected to the identity, while (A.8”), containing the spatial
inversion τ̃ = τ , σ̃ = −σ, gives the other connected component of the group.
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Let us remark that if we have h̃αβ = eφ̃ηαβ the reparametrization (A.8’) gives the
following form for a general metric hαβ

hαβ(ζ) =
∂ζ̃γ

∂ζα

∂ζ̃δ

∂ζβ
h̃γδ(ζ̃) =

1
2
e[φ(F+(ζ),F−(ζ))]

[
∂αF+(ζ)∂βF−(ζ) + ∂βF+(ζ)∂αF−(ζ)

]
.

(A.9)
Equation (A.9), when applied to the intrinsic metric gαβ of the Brink-Di Vecchia-Howe
lagrangian, is the starting point of reference [7] to find the string solutions in an arbitrary
gauge. Indeed, from

(∂̃2
0 − ∂̃2

1)x̃µ = 0,

we get

x̃µ(σ̃, τ̃) = αµ(τ̃ + σ̃) + βµ(τ̃ − σ̃) = xµ(σ, τ) = αµ(F+[ρ1(σ, τ)])) + βµ(F−[ρ2(σ, τ)]),
(A.10)

where we have used equation (A.8’) and where ρi(ζ) are the solutions of the equations

∂0ρi = zi∂1ρi,

with the zi given by equations (A.4) in terms of the metric hαβ(σ, τ).
If now xµ(σ, τ) are regular coordinates, with an induced metric having the limit for

σ → 0 or π as given by the equation (B.27), that is
hαβ(σ, τ)−−−→σ→0

(
0 0
0 −D2

)
+ σ

(
A B
B C

)
+ σ2

(
A′ B′

B′ C ′

)
+ O(σ3)

hαβ(σ, τ)−−−→σ→0

1
Aσ

(
1 0
0 0

)
+

1
AD2

(
−B2+A′D2

A +B
+B −A

)
+ O(σ),

(A.11)

we have the associated zi
z1 =

√
A

D

√
σ − B

D2
σ − B2 −AC −A′D2

2
√

AD3
σ

3
2 + O(σ2),

z2 = −
√

A

D

√
σ − B

D2
σ +

B2 −AC −A′D2

2
√

AD3
σ

3
2 + O(σ2),

(A.12)

and the equations ∂0ρi = zi∂1ρi have the following solutions in the neighbourhood of
σ = 0:

ρi(σ, τ)−−−→σ→0

∫ τ

0

√
A(λ)

D(λ)
dλ + 2(−1)i+1

√
σ + O(σ). (A.13)

Therefore the parametrization we are looking for has the form (A.8’) for σ → 0: τ̃(σ, τ) → α(τ) + β(τ)
√

σ + O(σ),

σ̃(σ, τ) → γ(τ)
√

σ + O(σ).
(A.14)
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The Jacobian is

J =
∂τ̃

∂τ

∂σ̃

∂σ
− ∂τ̃

∂σ

∂σ̃

∂τ
=(α̇ + β̇

√
σ)

γ

2
√

σ
− β

2
√

σ
γ̇
√

σ + O(
√

σ) =

=
α̇(τ)γ(τ)

2
√

σ
+

1
2

(
β̇(τ)γ(τ)− β(τ)γ̇(τ)

)
+ O(

√
σ).

(A.15)

Therefore J diverges at σ = 0 to transform regular coordinates into singular ones.

Appendix B.

Let us assume that the coordinates xµ(σ, τ), either regular or singular, may be ex-
panded in Taylor series in the neighbourhood of σ = σi, i = 1, 2. We shall only con-
sider σ1 = 0, for the results for σ2 = π are just the same. Moreover we shall consider
parametrization such that ẋ2(σ, τ) ≥ 0, x′

2(σ, τ) ≤ 0. Then, by assumption we have:

xµ(σ, τ) =
∞∑

n=0

σn

n!
xµ

n(τ)


xµ

0 (τ) = xµ(0, τ),

xµ
n(τ) =

∂nxµ(σ, τ)
∂σn

∣∣∣∣
σ=0

n > 0.
(B.1)

The two tangent vectors in σ = 0 are ẋµ
0 (τ) and xµ

1 (τ) = x′µ(0, τ). From equation
(B.1) we get

ẋ2(σ, τ) =
∞∑

n=0

σn
n∑

m=0

1
m!(n−m)!

ẋm · ẋn−m,

x′
2(σ, τ) =

∞∑
n=0

σn
n∑

m=0

1
m!(n−m)!

xm+1 · xn−m+1, (B.2)

ẋ(σ, τ) · x′(σ, τ) =
∞∑

n=0

σn
n∑

m=0

1
m!(n−m)!

ẋn−m · xm+1.

Equations (B.2) imply

−h(σ, τ) =
∞∑

n=0

σn
n∑

m=0

n−m∑
k=0

m∑
h=0

1
k!(n−m− k)!h!(m− h)!

·

· [(ẋn−m−k · xk+1)(ẋm−h · xh+1)− (ẋn−m−k · ẋk)(xm−h+1 · xh+1)] =

≡
∞∑

n=0

gnσn,

√
−h(σ, τ)

N
Pµ(σ, τ) =

∞∑
n=0

σn
n∑

m=0

n−m∑
k=0

(ẋn−m−k · xk+1)x
µ
m+1 − (xn−m−k+1 · xk+1)ẋµ

m

k!m!(n−m− k)!
,

√
−h(σ, τ)

N
Πµ(σ, τ) =

∞∑
n=0

σn
n∑

m=0

n−m∑
k=0

(ẋn−m−k · xk+1)ẋµ
m − (ẋn−m−k · ẋk)xµ

m+1

k!m!(n−m− k)!
.

(B.3)
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We are looking for the minimal set of conditions we have to require on xµ
n(τ), in

order to ensure Pµ(0, τ) and Πµ(0, τ) to be finite (and obviously h(σ, τ) ≤ 0), with a total
momentum Pµ 6= 0, and P 2 ≥ 0 .

It is easily seen that a consistent solution only exists for h = 0 up to second order in
σ. So we will have

g0 = (ẋ0, x1)2 − ẋ2
2x1

2 = 0, (B.4)

g1 =2(ẋ0, x1)[(ẋ− 0, x2) + (x1, ẋ1)]−
− 2[ẋ2

0(x1, x2) + x1
2(ẋ0, ẋ1)] = 0,

(B.5)

g2 =(ẋ0, x1)[(ẋ2, x1) + 2(ẋ1, x2) + (ẋ0, x3)]+

+ [(ẋ− 0, x2) + (x1, ẋ1)]2 − ẋ2
0[(x1, x3) + x2

2]−
− 4(x1, x2)(ẋ0, ẋ1)− x1

2[(ẋ0, ẋ2) + ẋ2
1] > 0.

(B.6)

Moreover, the finiteness of Pµ(0, τ) and Πµ(0, τ) requires

(ẋ0, x1)x1
µ − x1

2ẋµ
0 = 0, (B.7)

(ẋ0, x1)ẋ
µ
0 − ẋ2

0x1
µ = 0. (B.8)

Since we are interested in the class (ii) of Section 2, we find first of all that

x1
2 = ẋ2

0 = (ẋ0, x1) = 0, (B.9)

and, up to second order in σ for h(σ, τ), we get a solution with

−h(σ, τ) = g2(τ)σ2 + O(σ3), (B.10)

where
g2 = (ẋ0, x2)2 − 4(x1, x2)(ẋ0, x1) > 0. (B.11)

For Pµ(σ, τ) and Πµ(σ, τ) (finite in σ = 0), we get

Pµ(σ, τ) = N
(ẋ0, x2)x

µ
1 − 2(x1, x2)ẋ

µ
0√

g2
+ O(σ), (B.12)

Πµ(σ, τ) = N
(ẋ0, x2)ẋ

µ
0 − 2(x1, x2)x

µ
1√

g2
+ O(σ). (B.13)

The λ1,2 are given by

λ1(σ, τ) =
√

g2

4N(x1, x2)
+ O(σ), (B.14)

λ2(σ, τ) = − (ẋ0, x2)
2(x1, x2)

+ O(σ). (B.15)
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Nevertheless, since in this case (class (ii)) we have that ẋµ
0 and xµ

1 are collinear, it
follows from ẋ2

0 = 0 that (ẋ0, ẍ0) = 0, and from this (ẍ0, x1) = 0, so that, from (ẋ0, x1) = 0
it follows (ẍ0, x1) + (ẋ0, ẋ1) = 0, that is (ẋ0, ẋ1) = 0.

So we have the following simplification

g2 = (ẋ0, x2)2, (B.16)

Pµ = N
(ẋ0, x2)x1

µ − 2(x1, x2)ẋ
µ
0

|(ẋ0, x2)|
, (B.17)

Πµ = N
(ẋ0, x2)ẋ

µ
0

|(ẋ0, x2)|
, (B.18)

and

λ1 =
|(ẋ0, x2)|

4N(x1, x2)
, (B.19)

λ1 = − (ẋ0, x2)
2(x1, x2)

. (B.20)

We see that between λ1 and λ2 the following relation holds

2Nλ1 ± λ2 = 0, (B.21)

according to the sign of (ẋ0, x2) > or < 0.
In the o.g. case, since x′

µ(0, τ) = 0 for any τ , we have xµ
1 = 0, and a consistent

solution can be recovered to fourth order in σ for h(σ, τ).
If we look for a solution in the regular case (class (i) of Section 2), without necessarily

requiring the finiteness of Pµ(0, τ) and Πµ(0, τ), we find that a solution exists at first order
in σ for −h.

This means
g0 = 0, g1 > 0, (B.22)

with
x1

2 < 0, ẋ2
0 = 0, (ẋ0, x1) = 0. (B.23)

We get
g1 = −2x1

2(ẋ0, ẋ1), (B.24)

Pµ = N

√
− x1

2

2(ẋ0, ẋ1)
1√
σ

ẋµ
0 + O(

√
σ), (B.25)

Πµ = N
[((ẋ0, x2) + (x1, ẋ1)) ẋµ

0 − 2(ẋ0, ẋ1)x1
µ]√

−2x1
2(ẋ0, ẋ1)

√
σ + O(σ

3
2 ). (B.26)
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The induced metric hαβ and its determinant h are given by

hαβ =
(

0 0
0 x1

2

)
+ σ

(
2(ẋ0, ẋ1) [(ẋ0, x2) + (ẋ1, x1)]

[(ẋ0, x2) + (ẋ1, x1)] 2(x1, x2)

)
+

+ σ2

(
[(ẋ0, ẋ2) + ẋ2

1]
1
2 [(ẋ0, x1) + 2(ẋ1, x2) + (ẋ0, x3)]

1
2 [(ẋ0, x1) + 2(ẋ1, x2) + (ẋ0, x3)] [(x1, x3) + x2

2]

)
+

+ O(σ3), (B.27)

h =det ‖ hαβ ‖= σ[2x1
2(ẋ0, ẋ1)]+

+ σ2[4(x1, x2)(ẋ0, ẋ1) + x1
2
(
(ẋ0, ẋ2) + ẋ2

1

)
− ((ẋ0, x2) + (x1, ẋ1))

2]+

+ O(σ3). (B.28)

Appendix C.

We give here some formulas for the distributions ∆±(σ, σ′), used in the evaluation of
some Poisson brackets.

If f(x) and g(x) are periodic functions, with period 2π, and with definite parity given
by

Pf = ±1, if f(x) = ±f(−x),

where, of course, Pf ′ = −Pf , we have the following identities

f(x)g(y)∆′±(x, y) = f(y)g(y)∆′±Pf
(x, y)− f ′(x)g(x)∆±Pg

(x, y) (C.1)

f(x)g(y)∆′+(x, y)± f(y)g(x)∆′−(x, y) = ±f(x)g(x)∆′−Pf
(x, y)+

+f(y)g(y)∆′+Pf
(x, y)− f ′(x)g(x)

[
∆+Pg (x, y)∓∆−Pf

(x, y)
]

(C.2)

[f(x)g(y)− f(y)g(x)]∆′±(x, y) = [f(y)g(y)− f(x)g(x)]∆′±Pf
(x, y)−

−f ′(x)g(x)
[
∆±Pg

(x, y) + ∆±Pf
(x, y)

]
(C.3)

[f(x)g(y) + f(y)g(x)]∆′±(x, y) = [f(y)g(y) + f(x)g(x)]∆′±Pf
(x, y)−

−f ′(x)g(x)
[
∆±Pg (x, y)−∆±Pf

(x, y)
]
. (C.4)
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